
EXPOSING FINE-GRAINED PARALLELISM IN ALGEBRAIC
MULTIGRID METHODS

NATHAN BELL† , STEVEN DALTON‡ , AND LUKE N. OLSON§

Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in many
computational simulations, yet parallel algorithms for such solvers are generally decomposed into
coarse-grained tasks suitable for distributed computers with traditional processing cores. However,
accelerating multigrid on massively parallel throughput-oriented processors, such as the GPU, de-
mands algorithms with abundant fine-grained parallelism. In this paper, we develop a parallel
algebraic multigrid method which exposes substantial fine-grained parallelism in both the construc-
tion of the multigrid hierarchy as well as the cycling or solve stage. Our algorithms are expressed
in terms of scalable parallel primitives that are efficiently implemented on the GPU. The resulting
solver achieves an average speedup of 1.8× in the setup phase and 5.7× in the cycling phase when
compared to a representative CPU implementation.

Key words. algebraic multigrid, parallel, sparse, gpu, iterative

AMS subject classifications. 65-04, 68-04, 65F08, 65F50, 68W10

1. Introduction. Throughput-oriented processors, such as graphics processing
units (GPUs), are becoming an integral part of many high-performance computing
systems. In contrast to traditional CPU architectures, which are optimized for com-
pleting scalar tasks with minimal latency, modern GPUs are tailored for parallel work-
loads that emphasize total task throughput [16]. Therefore, harnessing the computa-
tional resources of the such processors requires programmers to decompose algorithms
into thousands or tens of thousands of separate, fine-grained threads of execution. Un-
fortunately, the parallelism exposed by previous approaches to algebraic multigrid is
too coarse-grained for direct implementation on GPUs.

Algebraic multigrid methods solve large, sparse linear systems Ax = b by con-
structing a hierarchy of grid levels directly from the matrix A. In this paper, we study
the components that comprise the two distinct phases in AMG — i.e., the setup and
solve phases — and demonstrate how they can be decomposed into scalable parallel
primitives.

Parallel approaches to multigrid are plentiful. Algebraic multigrid methods have
been successfully parallelized on distributed-memory CPU clusters using MPI [12, 10]
and more recently with a combination of MPI and OpenMP [2], to better utilize
multi-core CPU nodes. While such techniques have demonstrated scalability to large
numbers of processors, they are not immediately applicable to the GPU. In partic-
ular, effective use of GPUs requires substantial fine-grained parallelism at all stages
of the computation. In contrast, the parallelism exposed by existing methods for
distributed-memory clusters of traditional cores is comparably coarse-grained and
cannot be scaled down to arbitrarily small subdomains. Indeed, coarse-grained par-
allelization strategies are qualitatively different than fine-grained strategies.

For example, it is possible to construct a successful parallel coarse-grid selection
algorithm by partitioning a large problem into sub-domains and applying an effective,
serial heuristic to select coarse-grid nodes on the interior of each sub-domain, followed

†NVIDIA Research, nbell@nvidia.com, http://www.wnbell.com
‡Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL

61801, dalton6@illinois.edu
§Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL

61801, lukeo@illinois.edu, http://www.cs.illinois.edu/homes/lukeo

1

2 Bell, Dalton, Olson

by a less-effective but parallel heuristic to the interfaces between sub-domains [22]. An
implicit assumption in this strategy is that the interiors of the partitions (collectively)
contain the vast majority of the entire domain, otherwise the serial heuristic has
little impact on the output. Although this method is scalable to arbitrarily fine-
grained parallelism in principle, the result is qualitatively different. In contrast, the
methods we develop do not rely on partitioning and expose parallelism to the finest
granularity — i.e., one thread per matrix row or one thread per nonzero entry.

Geometric multigrid methods were the first to be parallelized on GPUs [19, 9, 34].
These “GPGPU” approaches, which preceded the introduction of the CUDA and
OpenCL programming interfaces, programmed the GPU through existing graphics
application programming interfaces (APIs) such as OpenGL and Direct3d. Subse-
quent works demonstrated GPU-accelerated geometric multigrid for image manipula-
tion [25] and CFD [13] problems. Previous works have implemented the cycling stage
of algebraic multigrid on GPUs [18, 21], however hierarchy construction remained on
the CPU. A parallel aggregation scheme is described in [35] that is similar to ours
based on maximal independent sets, while in [1] the effectiveness of parallel smoothers
based on sparse matrix-vector products is demonstrated. Although these works were
implemented for distributed CPU clusters, they are amenable to fine-grained paral-
lelism as well.

In Section 1.2, we review the components of the setup and solve phases of AMG,
noting the principal challenge in targeting GPU acceleration. Our approach to the
GPU is to describe the components of multigrid in terms of parallel primitives, which
we define in Section 2. In Section 3 we detail our specific approach to exposing
fine-grained parallelism in the components of the setup phase, and in Section 4, we
highlight the value of the sparse matrix-vector product in the computation. In Section
5 we discuss several performance results of our method on the GPU in comparison
to the efficiency we observe on a standard CPU. Finally, in the Appendix we provide
additional details of a parallel aggregation method.

1.1. Background. Multigrid methods precondition large, sparse linear systems
of equations and in recent years have become a robust approach for a wide range
of problems. One reason for this increase in utility is the trend toward more alge-
braic approaches. In the classical, geometric form of multigrid, the performance relies
largely on specialized smoothers, and a hierarchy of grids and interpolation operators
that are predefined through the geometry and physics of the problem. In contrast,
algebraic-based multigrid methods (AMG) attempt to automatically construct a hi-
erarchy of grids and intergrid transfer operators without explicit knowledge of the
underlying problem — i.e., directly from the linear system of equations [32, 37].

In the remainder of this section, we outline the basic components of AMG in
an aggregation context [37] and highlight the necessary sparse matrix computations
used in the process. We restrict our attention to aggregation methods because of
the flexibility in the construction, however our development also extends to classical
AMG methods based on coarse-fine splittings [32].

1.2. Components of Algebraic Multigrid. The performance of AMG relies
on a compatible collection of relaxation operators, coarse grid operators, and inter-
polation operators as well as the efficient construction of these operations. In this
section we outline the components of aggregation-based AMG that we consider for
construction on the GPU.

Aggregation-based AMG requires a a priori knowledge or prediction of the near-
nullspace that represent the low-energy error. For an n×n symmetric, positive-

Fine-Grained Parallelism in AMG 3

definite matrix problem Ax = b, these m modes are denoted by the n×m column
matrix B. Generally, the number of near-nullspace modes, m, is a small, problem-
dependent constant. For example, the scalar Poisson problem requires only a single
near-nullspace mode while 6 rigid body modes are needed to solve three-dimensional
elasticity problems. We also denote the n×n problem as the fine level and label
the indices Ω0 = {0, . . . , n − 1} as the fine grid. From A, b, and B, the components
of the solver are defined through a setup phase, and include grids Ωk, interpolation
operators Pk, restriction operators Rk, relaxation error propagation operators, and
coarse representations of the matrix operator Ak, all for each level k. We denote index
M as the maximum level — e.g., M = 1 is a two-grid method.

1.2.1. Setup Phase. We follow a setup phase that is outlined in Algorithm 1.
The setup assumes input of a sparse matrix, A, and user-supplied vectors, B, which
may represent low eigenmodes of the problem; here, we consider the constant vector, a
common default for input. The following sections detail each of the successive routines
in the setup phase: strength, aggregate, tentative, prolongator, and the triple
matrix Galerkin product. One of the goals of this paper is to systematically consider
the sparse matrix operations in Lines 1-6.

Algorithm 1: AMG Setup: setup

parameters: A, B
return: A0, . . . , AM , P0, . . . , PM−1

A0 ← A, B0 ← B
for k = 0, . . . ,M

1 Ck ← strength(Ak) {strength-of-connection}

2 Aggk ← aggregate(Ck) {construct coarse aggregates}

3 Tk, Bk+1 ← tentative(Aggk, Bk) {form tentative interpolation}

4 Pk ← prolongator(Ak, Tk) {improve interpolation}

5 Rk ← PTk {transpose}

6 Ak+1 ← RkAkPk {coarse matrix, triple-matrix product}

1.2.2. Strength-of-connection. A vertex i in the fine matrix graph that strongly
influences or strongly depends on a neighboring vertex j typically has a large, rela-
tive edge weight. As a result, the traditional approach for aggregation schemes is to
identify two points i and j as strongly connected if they satisfy

|A(i, j)| > θ
√
|A(i, i)A(j, j)|. (1.1)

This concise statement yields a connectivity graph represented by sparse matrix Ck.
Algorithm 2 describes the complete strength-of-connection algorithm for the COO
matrix format. A parallel implementation of this algorithm is discussed in Section 3.1.

1.2.3. Aggregation. An aggregate or grouping of nodes is defined by a root
node i and its neighborhood — i.e., all points j, for which C(i, j) 6= 0, where C is a
strength matrix. The standard (serial) aggregation procedure consists of two phases:

1. For each node i, if i and each of its strongly connected neighbors are not yet
aggregated, then form a new aggregate consisting of i and its neighbors.

4 Bell, Dalton, Olson

Algorithm 2: Strength of connection: strength

parameters: Ak ≡ (I, J, V), COO sparse matrix
return: Ck ≡ (Î , Ĵ , V̂), COO sparse matrix

M = {0, . . . , nnz(A)− 1}
D ← 0

1 for n ∈M {extract diagonal}

if In = Jn
D(In)← Vn

2 for n ∈M {check strength}

if |Vn| > θ
√
|D(In)| · |D(Jn)|

(În̂, Ĵn̂, V̂n̂)← (In, Jn, Vn)

2. For each remaining unaggregated node i, sweep i into an adjacent aggregate.

The first phase of the algorithm visits each node and attempts to create disjoint
aggregates from the node and its 1-ring neighbors. It is important to note that the
first phase is a greedy approach and is therefore sensitive to the order in which the
nodes are visited. We revisit this artifact in Section 3.2, where we devise a parallel
aggregation scheme that mimics the standard sequential algorithm up to a reordering
of the nodes.

Nodes that are not aggregated in the first phase are incorporated into an adjacent
aggregate in the second phase. By definition, each unaggregated node must have at
least one aggregated neighbor (otherwise it could be the root of a new aggregate)
so all nodes are aggregated after the second phase. When an unaggregated node is
adjacent to two or more existing aggregates, an arbitrary choice is made. Alterna-
tively, an aggregate with the largest/smallest index or the aggregate with the fewest
members, etc., could be selected. Figure 1.1 illustrates a typical aggregation pattern
for structured and unstructured meshes.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

(a) Structured Mesh Aggregates

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35
36

37

38

39

4041

42

43

44

45 46

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35
36

37

38

39

4041

42

43

44

45 46

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35
36

37

38

39

4041

42

43

44

45 46

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35
36

37

38

39

4041

42

43

44

45 46

(b) Unstructured Mesh Aggregates

Fig. 1.1. Example of a mesh (gray) and aggregates (outlined in black). Nodes are labeled
with the order in which they are visited by the sequential aggregation algorithm and the root nodes,
selected in the first phase of the algorithm, are colored in gray. Nodes that are adjacent to a root
node, such as nodes 1 and 6 in 1.1a are aggregated in phase 1. Nodes that are not adjacent to a
root node, such as nodes 8, 16, and 34 in 1.1a are aggregated in second phase.

Fine-Grained Parallelism in AMG 5

The aggregation process results in a sparse matrix Agg, which encodes the aggre-
gates using the following scheme,

Agg(i, j) =

{
1 if the ith node is contained in the jth aggregate

0 otherwise.
(1.2)

1.2.4. Construction of the Tentative Prolongator. From an aggregation,
represented by Agg, and a set of coarse-grid candidate vectors, represented by B, a
tentative interpolation operator is defined. The tentative interpolation operator or
prolongator matrix T is constructed such that each row corresponds to a grid point
and each column corresponds to an aggregate. When there is only one candidate
vector, the sparsity pattern of the tentative prolongator is exactly the same as Agg.
Specifically, with the sparsity pattern induced by Aggk, the numerical entries of Tk
are defined by the conditions,

Bk = TkBk+1, TTk Tk = I, (1.3)

which imply that (1) the near-nullspace candidates lie in the range of Tk and (2) that
columns of Tk are orthonormal. For instance, in an example with five fine-grid nodes
(with two coarse aggregates), we have matrices

Bk =

B1,1

B2,1

B3,1

B4,1

B5,1

 , Tk =

B1,1/C1

B2,1/C1

B3,1/C2

B4,1/C2

B5,1/C2

 , Bk+1 =

[
C1

C2

]
, (1.4)

that satisfy the interpolation (Bk = TkBk+1) and orthonormality conditions (TTk Tk =
I), using the scaling factors C1 = ||[B1,1, B2,1]|| and C2 = ||[B3,1, B4,1, B5,1]||.

Although we only consider the case of a single candidate vector in this paper, for
completeness we note that when Bk contains m > 1 low-energy vectors, the tentative
prolongator takes on a block structure. An important component of the setup phase
is to express these operations efficiently on the GPU, which we detail in Section 3.4.

1.2.5. Prolongator Smoothing. The tentative prolongation operator is a di-
rect attempt to enforce the range of interpolation to coincide with the (user-provided)
near null-space modes. This has limitations however, since the modes may not ac-
curately represent the “true” near null-space and since the interpolation is still only
local, and thus limited in accuracy. One approach to improving the properties of
interpolation is to smooth the columns of the tentative prolongation operator. With
weighted-Jacobi smoothing, for example, the operation computes a new sparse matrix
P whose columns,

P (:, j) = (I − ωD−1A)T (:, j), (1.5)

are the result of applying one-iteration of relaxation to each column of the tentative
prolongator. In practice, we compute all columns of P in a single operation using a
specialized sparse matrix-matrix multiplication algorithm.

6 Bell, Dalton, Olson

1.2.6. Galerkin Product. The construction of the sparse Galerkin product
Ak+1 = RkAkPk in Line 6 of Algorithm 1 is typically implemented with two separate
sparse matrix-matrix multiplies — i.e., (RA)P or R(AP). Either way, the first prod-
uct is of the form [n×n] ∗ [n×nc] (or the transpose), while the second product is of
the form [nc × n] ∗ [n× nc].

Efficient sequential sparse matrix-matrix multiplication algorithms are described
in [20, 3]. In these methods the Compressed Sparse Row (CSR) format is used,
which provides O(1) indexing of the matrix rows. As a result, the restriction matrix
Rk = PTk is formed explicitly in CSR format before the Galerkin product is computed.

While the sequential algorithms for sparse matrix-matrix multiplication are effi-
cient, they rely on a large amount of (per thread) temporary storage, and are therefore
not suitable for fine-grained parallelism. Specifically, to compute the sparse product
C = A ∗ B, the sequential methods use O(N) additional storage, where N is the
number of columns in C. In contrast, our approach to sparse matrix-matrix multi-
plication, detailed in Section 3.3, is formulated in terms of highly-scalable parallel
primitives with no such limitations. Indeed, our formulation exploits parallelism at
the level of individual matrix entries.

1.3. Spectral radius. For the smoothers such as weighted Jacobi or Chebyshev,
a calculation of the spectral radius of a matrix — i.e., the eigenvalue of the matrix with
maximum modulus — is often needed in order to yield effective smoothing properties.
These smoothers are central to the relaxation scheme in the cycling phase and the
prolongation in the setup phase, so we consider the computational impact of these
calculations. Here, we use an approximation of the spectral radius of D−1A where D
is matrix of the diagonal of A.

To produce accurate estimates of the spectral radius we use an Arnoldi iteration
which reduces A to an upper Hessenberg matrix H by similarity transformations.
The eigenvalues of the small fixed-size dense matrix H are then computed directly.
In Section 5, we see that computing the spectral radius has a non-trivial role in the
total cost of the setup phase.

1.4. Cycling Phase. The multigrid cycling or solve phase is detailed in Algo-
rithm 3. Several computations are executed at each level in the algorithm, but as
we see in Lines 2-6, the operations are largely sparse matrix-vector multiplications
(SpMV). Consequently, on a per-level basis, we observe a strong relationship between
the performance of the SpMV and the computations in Lines 2-6. For example, the
smoothing sweeps on Lines 2 and 6 are both implemented as affine operations such as
xk ← xk−ωD−1(Axk−b), in the case of weighted Jacobi. This is a highly parallelized
AXPY operation as well as a SpMV. This is also the case for the residual on Line 3,
and the restriction and interpolation operations on Lines 4 and 5. Finally, we coarsen
to only a few points so that the coarse solve on Line 1 is efficiently handled by either
relaxation or an arbitrary direct solver.

While the computations in the solve phase are straightforward at a high-level,
they rely heavily on the ability to perform unstructured SpMV operations efficiently.
Indeed, even though the fine level matrix may exhibit a well-defined structure, the
unstructured nature of the aggregation process produces coarse-level matrices with
less structure. In Section 5 we examine the cost of the solve phase in more detail.

2. Parallel Primitives. Our method for exposing fine-grained parallelism in
AMG leverages (data) parallel primitives [8, 33]. We use the term primitives to refer
to a collection of fundamental algorithms that emerge in numerous contexts such as

Fine-Grained Parallelism in AMG 7

Algorithm 3: AMG Solve: solve

parameters: Ak, Rk, Pk, xk, bk
return: xk, solution vector

if k = M
1 solve Akxk = bk

else
2 xk ← presmooth(Ak, xk, bk, µ1) {smooth µ1 times on Akxk = bk}

3 rk ← bk −Akxk {compute residual}

4 rk+1 ← Rkrr {restrict residual}

ek+1 ← solve(Ak+1, Rk+1, Pk+1, ek+1, rk+1) {coarse-grid solve}

5 ek ← Pkek+1 {interpolate solution}

xk ← xk + ek {correct solution}

6 xk ← postsmooth(Ak, xk, bk, µ2) {smooth µ2 times on Akxk = bk}

reduction, parallel prefix-sum (or scan), and sorting. In short, these primitives are to
general-purpose computations what BLAS [26] is to computations in linear algebra.

Given the broad scope of their usage, special emphasis has been placed on the per-
formance of primitives and very highly-optimized implementations are readily avail-
able for the GPU [33, 28, 29]. The efficiency of our solver, and hence the underlying
parallel primitives, is demonstrated in Section 5.

Our AMG solver is implemented almost exclusively with the parallel primitives
provided by the Thrust library [23]. In the remaining part of this section we iden-
tify a few of the most important Thrust algorithms and illustrate their usage. For
ease of exposition we omit some of the precise usage details, however the essential
characteristics are preserved.

2.1. Reduction. A critical component is that of simplifying an array to a single
value, or a reduction. In Thurst, the reduce algorithm reduces a range of numbers to
a single value by successively summing values together:

reduce([3, 4, 1, 5, 2])→ 15.

The same algorithm can be used to determine the maximum entry, by specifying
maximum for the reduction operator:

reduce([3, 4, 1, 5, 2], maximum)→ 5.

In general, any function that is both commutative and associative is a valid reduction
operator.

Reductions involving two vectors are implemented with the inner product algo-
rithm. As the name suggests, by default the algorithm computes the mathematical
inner-product (or dot product),

inner product([3, 4, 1, 5], [0, 1, 2, 3])→ 21.

As with reduce, the inner product algorithm supports different reduction and ele-
mentwise vector operations, in place of addition and multiplication respectively. For

8 Bell, Dalton, Olson

example,

inner product([1, 2, 3], [1, 2, 3], logical and, equals)→ true,

inner product([1, 2, 3], [1, 0, 3], logical and, equals)→ false,

tests two vectors for equality.

2.2. Scan. Similarly, the parallel prefix-sum, or scan, primitive computes the
cumulative sum of an array and is a fundamental component of common algorithms
such as stream compaction. In Thrust, the inclusive scan algorithm computes the
“inclusive” variant of the scan primitive,

inclusive scan([3, 4, 1, 5, 2])→ [3, 7, 8, 13, 15],

while the exclusive scan algorithm computes the “exclusive” variant,

exclusive scan([3, 4, 1, 5, 2], 10)→ [10, 13, 17, 18, 23],

which incorporates a user-specified starting value and excludes the final sum. As with
reduction, the scan algorithms accept other binary operations such as maximum,

inclusive scan([3, 4, 1, 5, 2], maximum)→ [3, 4, 4, 5, 5],

provided that the operator is associative.

2.3. Transformations. We also encounter transformations on arrays, or ele-
mentwise map operations, which are implemented with the transform algorithm.
Unary transformations apply a unary functor to each element of an input array
and write the output to another array. For example, transforming an array with
the negate functor,

transform([3, 4, 1], negate)→ [−3,−4,−1],

implements vector negation. In the same way, binary transformations apply a binary
functor to pairs of elements in two input arrays and write the output to another array.
For example, transforming a pair of vectors with the plus functor,

transform([3, 4, 1], [4, 5, 7], plus)→ [7, 9, 8],

implements vector addition.

2.4. Gathering and Scattering. Related to transformation are the gather

and scatter algorithms,

gather([3, 0, 2], [11, 12, 13, 14])→ [14, 11, 13],

scatter([3, 0, 2], [11, 12, 13], [∗, ∗, ∗, ∗])→ [12, ∗, 13, 11],

which copy values based on an index map ([3, 0, 2] in the examples). Here, the place-
holder ∗ represents elements of the output range that are not changed by the algo-
rithm. Whenever an algorithm requires an indirect load or store operator — e.g.,
v = X[map[i]] or Y [map[i]] = v — a gather and scatter is typically required.
Predicated versions of the functions,

gather if([3, 0, 2], [true, false, true], [11, 12, 13, 14], [∗, ∗, ∗])→ [14, ∗, 13],

scatter if([3, 0, 2], [true, false, true], [11, 12, 13], [∗, ∗, ∗, ∗])→ [∗, ∗, 13, 11],

copy values conditionally.

Fine-Grained Parallelism in AMG 9

2.5. Stream Compaction. It is often necessary to filter elements of an ar-
ray based on a given condition or predicate. This process, known as stream com-
paction [33], is implemented with Thrust by combining the copy if algorithm with
a predicate functor, and is invaluable in expressing certain components of AMG such
as strength-of-connection. For example,

copy if([3, 4, 1, 5, 2], is even)→ [4, 2],

copies the even elements of an array to another array, preserving their original or-
der. Here is even is a unary functor that returns true if the argument is even
and false otherwise.

The first variant of copy if, applies the predicate functor to the values of the
input sequence and copies a subset of them to the output range. A second variant
applies the predicate to a separate sequence and copies a subset of the corresponding
values to the output. For example,

copy if([0, 1, 2, 3, 4], [3, 4, 1, 5, 2], is even)→ [1, 4],

outputs the positions of even elements, as opposed to the values of even elements.

2.6. Segmented Reduction. The reduce algorithm reduces an entire array,
which is typically large, down to a single value. In practice it is often necessary to
compute a reduction for many different arrays at once, however using reduce for each
one is impractical since the array size is generally too small to expose sufficient fine-
grained parallelism. For this reason Thrust provides a reduce by key algorithm that
implements segmented reduction. In segmented reduction, an array of keys determines
which values belong to a segment. For example, the key array [0, 0, 1, 1, 1, 2] defines
three segments of lengths two, three, and one respectively. When the reduce by key

algorithm encounters a set of adjacent keys that are equivalent, it reduces the corre-
sponding values together and writes the key and the reduced value to separate output
arrays. For example,

reduce by key([0, 0, 1, 1, 1, 2], [10, 20, 30, 40, 50, 60])→ [0, 1, 2], [30, 120, 60].

Note that the key and value sequences are stored in separate arrays. This “structure of
arrays” representation is generally more computationally efficient than the alternative
“array of structures” representation, where keys and values are interleaved in memory.

2.7. Sorting. Sorting is a valuable primitive whenever disordered data must be
binned or easily indexed. This is helpful in many of our transformations in the AMG
setup phase. By default, the sort algorithm sorts data in ascending order,

sort([3, 4, 1, 5, 2])→ [1, 2, 3, 4, 5],

which is equivalent to specifying that elements should be compared using the standard
less comparison functor.

Thrust also provides the sort by key algorithm for sorting (logical) key-value
pairs. In the key-value sort, the keys are sorted as usual, while the value associated
to each key is moved to the corresponding position in the values array,

sort by key([3, 4, 1, 5, 2], [10, 20, 30, 40, 50])→ [1, 2, 3, 4, 5], [30, 50, 10, 20, 40].

Stable variants of the sorting primitives, stable sort and stable sort by key, are
guaranteed to preserve the relative ordering of equivalent keys.

10 Bell, Dalton, Olson

3. Parallel Hierarchy Construction. In this section we describe an imple-
mentation of the multigrid setup phase (cf. Algorithm 1) using parallel primitives
to expose the fine-grained parallelism required for GPU acceleration. Our primary
contributions are parallel algorithms for aggregation and sparse matrix-matrix multi-
plication. The complete source code for the method presented here is available in the
open-source Cusp library [6].

The methods described in this section are designed for the coordinate (COO)
sparse matrix format. The COO format is comprised of three arrays I, J, and V,
which store the row indices, column indices, and values, respectively, of the matrix
entries. We further assume that the COO entries are sorted by ascending row index.
Although the COO representation is not generally the most efficient sparse matrix
storage format, it is simple and easily manipulated. Furthermore, Cusp provides
efficient conversion methods between COO and other popular matrix formats such as
CSR, ELL, and HYB.

3.1. Strength of Connection. The symmetric strength-of-connection algo-
rithm (cf. Section 1.2.2) is straightforward to implement using parallel primitives.
Given a matrix A in coordinate format we first extract the matrix diagonal by com-
paring the row index array, I, to the column index array, J,

D = [0, 0, 0, 0],

is diagonal = transform(I, J, equals),

= [true, false, false, true, false, false, true, false, false, true],

D = scatter if(V, I, is diagonal, D),

= [2, 2, 2, 2],

and scattering the corresponding entries in the values array, V, when they are equal.

The second loop in Algorithm 2 is implemented with stream compaction. First
we obtain arrays containing D[i] and D[j] for each index in I and J respectively,

Di = gather(I, D),

= [2, 2, 2, 2, 2, 2, 2, 2, 2, 2],

Dj = gather(J, D),

= [2, 2, 2, 2, 2, 2, 2, 2, 2, 2],

from which the strength-of-connection threshold — i.e., θ
√
|D(In)| · |D(Jn)| in Algo-

rithm 2 — of each entry is computed:

threshold = transform(Di, Dj, soc threshold(theta)),

using a specially-defined functor soc threshold. Next, each entry in the values array,
V, is tested against the corresponding threshold to determine which entries are strong,

is strong = transform(V, threshold, greater),

= [true, true, true, true, true, true, true, true, true, true].

Finally, the matrix entries corresponding to strong connections are determined using
stream compaction to form a coordinate representation of the strength-of-connection

Fine-Grained Parallelism in AMG 11

matrix, namely

Ci = copy if(I, is strong, identity),

Cj = copy if(J, is strong, identity),

Cv = copy if(V, is strong, identity).

In practice we do not construct arrays such as Di and threshold explicitly in
memory. Instead, the gather and transform operations are fused with subsequent
algorithms to conserve memory bandwidth using Thrust’s permutation iterator

and transform iterator. Similarly, the three calls to copy if are combined into a
single stream compaction operation using a zip iterator. The translation from the
explicit version of the algorithm (shown here) and the more efficient, fused version
(not shown) is only a mechanical transformation. We refer to the Cusp [6] source
code for additional detail.

3.2. Aggregation. The sequential aggregation method (cf. Section 1.2.3) is de-
signed to produce aggregates with a particular structure. Unfortunately, the greedy
nature of the algorithm introduces sequential dependencies that prevent a direct par-
allelization of the algorithm’s first phase. In this section we describe a fine-grained
parallel analog of the sequential method based on a generalized maximal independent
set algorithm which produces aggregates with the same essential properties. A similar
parallel aggregation strategy is described in [35], albeit with a different implementa-
tion.

There are two observations regarding the aggregation depicted in Figure 1.1 that
lead to the description of our aggregation method. First, no two root nodes of the
aggregates are within a distance of two edges apart. Second, if any unaggregated
node is separated from all existing root nodes by more than two edges then it is free
to become the root of a new aggregate. Together, these conditions define a collec-
tion of root nodes that are a distance−2 maximal independent set, which we denote
MIS(2) and formalize in Definition 3.1. The first property ensures independence of
the nodes — i.e., that the minimum distance between any pair of root nodes exceeds a
given threshold. The second property ensures maximality — i.e., no additional node
can be added to the set without violating the property of independence. The standard
definition of a maximal independent set, which we denote MIS(1), is consistent with
this definition except with a distance of one. We defer a complete description of the
generalized maximal independent set algorithm to the Appendix. For the remainder
of this section, we assume that a valid MIS(2) is computed efficiently in parallel.

Definition 3.1 (MIS(k)). Given a graph G = (V,E), let Vroot ⊂ V be a set of
root nodes, and denote by dG(·, ·) the distance or shortest path between two vertices
in the graph. Then, Vroot is a maximal independent set of distance k, or MIS(k) if
the following hold:

1. (independence) Given any two vertices u, v ∈ Vroot, then dG(u, v) > k.
2. (maximality) There does not exist u ∈ V \Vroot such that dG(u, v) > k for all

v ∈ Vroot.
Given a valid MIS(2) the construction of aggregates is straightforward. Assume

that the MIS(2) is specified by an array of values in {0, 1}, where a value of 1 indicates
that corresponding node is a member of the independent set and value of 0 indicates
otherwise. We first enumerate the MIS(2) nodes with an exclusive scan operation,
giving each set node a unique index in [0, N − 1], where N is the number of nodes in

12 Bell, Dalton, Olson

the set. For example, on a linear graph with ten nodes, a MIS(2) with four set nodes,

mis = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1],

is enumerated as

enum = exclusive scan(mis, 0),

= [0, 1, 1, 1, 2, 2, 2, 3, 3, 3].

Since the i-th node in the independent set serves as the root of the i-th aggregate,
the only remaining task it so propagate the root indices outward.

The root indices are communicated to their neighbors with two operations resem-
bling a sparse matrix-vector multiply, y = Ax. Conceptually, each unaggregated node
looks at neighbors for the index of an aggregate. In the first step, all neighbors of a
root node receive the root node’s aggregate index — i.e., the value resulting from the
exclusive scan operation. In the second step, the remaining unaggregated nodes re-
ceive the aggregate indices of their neighbors, at least one of which must belong to an
aggregate. As before, in the presence of multiple neighboring aggregates a selection is
made arbitrarily. The two sparse matrix-vector operations are analogous to the first
and second phases of the sequential algorithm respectively — cf. Section 1.2.3. Our
implementation of the parallel aggregate propagation step closely follows the existing
techniques for sparse matrix-vector multiplication [5].

Figure 3.1 depicts a MIS(2) for a regular mesh and the corresponding aggregates
rooted at each independent set node. Although the root nodes are selected by a ran-
domized process (see the Appendix) the resulting aggregates are qualitatively similar
to those chosen by the sequential algorithm in Figure 1.1a. Indeed, with the appro-
priate permutation of graph nodes, the sequential aggregation algorithm selects the
same root nodes as the randomized MIS(2) method.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45
46

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45
46

(a) MIS(2)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45
46

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45
46

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

1617

18
19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45
46

(b) Aggregates

Fig. 3.1. Parallel aggregation begins with a MIS(2) set of nodes, colored in gray, and represent
the root of an aggregate — e.g., node 18. As in the sequential method, nodes adjacent to a root node
are incorporated into the root node’s aggregate in the first phase. In the second phase, unaggregated
nodes join an adjacent aggregate — e.g., nodes 12, 19, and 24 for root node 18.

3.3. Sparse Matrix-Matrix Multiplication. Efficiently computing the prod-
uct C = AB of sparse matrices A and B is challenging, especially in parallel. The
central difficulty is that, for irregular matrices, the structure of the output matrix C
has a complex and unpredictable dependency on the input matrices A and B.

The sequential sparse matrix-matrix multiplication algorithm mentioned in Sec-
tion 1.2.6 do not admit immediate, fine-grained parallelization. Specifically, for ma-
trices A and B of size [k×m] and [m×n] the method requires O(n) temporary storage

Fine-Grained Parallelism in AMG 13

to determine the entries of each sparse row in the output. As a result, a straightfor-
ward parallelization of the sequential scheme requires O(n) storage per thread, which
is untenable when seeking to develop tens of thousands of independent threads of
execution. While it is possible to construct variations of the sequential method with
lower per-thread storage requirements, any method that operates on the granularity
of matrix rows — i.e., distributing matrix rows over threads — requires a non-trivial
amount of per-thread state and suffers load imbalances for certain input. As a result,
we have designed an algorithm for sparse matrix-matrix multiplication based on sort-
ing, segmented reduction, and other operations which are well-suited to fine-grained
parallelism as discussed in Section 2.

As an example, we demonstrate our algorithm for computing C = A ∗ B, where

A =

[
5 10 0
15 0 20

]
and B =

25 0 30
0 35 40
45 0 50

 , (3.1)

have 4 and 6 nonzero entries respectively. The matrices are stored in coordinate
format as

A =

(0, 0, 5)
(0, 1, 10)
(1, 0, 15)
(1, 2, 20)

 and B =

(0, 0, 25)
(0, 2, 30)
(1, 1, 35)
(1, 2, 40)
(2, 0, 45)
(2, 2, 50)

 , (3.2)

where each (i, j, v) tuple of elements represents the row index, column index, and value
of the matrix entry. We note that the (i, j, v) tuples are only a logical construction used
to explain the algorithm. In practice the coordinate format is stored in a “structure
of arrays” layout with three separate arrays.

To expose fine-grained parallelism, our parallel sparse matrix-matrix multiplica-
tion algorithm proceeds in three stages:

1. Expansion of A ∗ B into a intermediate coordinate format T
2. Sorting of T by row and column indices to form T̂

3. Compression of T̂ by summing duplicate values for each matrix entry
In the first stage, T is formed by multiplying each entry A(i, j) of the left matrix with
every entry in row j of B, B(j, k) for all k. Here, the intermediate format is

T =

(0, 0, 125)
(0, 2, 150)
(0, 1, 350)
(0, 2, 400)
(1, 0, 375)
(1, 2, 450)
(1, 0, 900)
(1, 2, 1000)

, (3.3)

The expansion stage is implemented in parallel using gather, scatter, and prefix-sum
operations. We refer to the Cusp source code [6] for further detail.

The result of the expansion phase is an intermediate coordinate format with
possible duplicate entries that is sorted by row index, but not by column index. The

14 Bell, Dalton, Olson

second stage of the sparse matrix-matrix multiplication algorithm sorts the entries
of T into lexicographical order. For example, sorting the entries of T by the (i, j)
coordinate yields

T̂ =

(0, 0, 125)
(0, 1, 350)
(0, 2, 150)
(0, 2, 400)
(1, 0, 375)
(1, 0, 900)
(1, 2, 450)
(1, 2, 1000)

, (3.4)

from which the duplicate entries are easily identified. The lexicographical reorder-
ing is efficiently implemented with two invocations of Thrust’s stable sort by key

algorithm.
The final stage of the algorithm compresses duplicate coordinate entries while

summing their corresponding values. Since T̂ is sorted by row and column, the dupli-
cate entries are stored contiguously and are compressed with a single application of
the reduce by key algorithm. In our example T̂ becomes

C =

(0, 0, 125)
(0, 1, 350)
(0, 2, 550)
(1, 0, 1275)
(1, 2, 1450)

 , (3.5)

where each of the duplicate entries have been combined. The compressed result is
now a valid, duplicate-free coordinate representation of the matrix

A ∗ B =

[
125 350 550
1275 0 1450

]
.

All three stages of our sparse matrix-matrix multiplication algorithm expose am-
ple fine-grained parallelism. Indeed, even modest problem sizes generate enough inde-
pendent threads of execution to fully saturate the GPU. Furthermore, because we have
completely flattened the computation into efficient data-parallel algorithms — i.e.,
gather, scatter, scan, stable sort by key, etc. — our implementation is insensi-
tive to the (inherent) irregularity of sparse matrix-matrix multiplication. As a result,
even pathological inputs do not create substantial imbalances in the work distribution
among threads.

Another benefit is that our parallel sparse matrix-matrix algorithm has the same
computational complexity as the sequential method, which is O(nnz(T)), the number
of entries in our intermediate format. Therefore our method is “work-efficient” [8],
since (1) the complexity of the sequential method is proportional to the size of the in-
termediate format T and (2) the work involved at each stage of the algorithm is linear
in the size of T. The latter claim is valid since Thrust employs work-efficient implemen-
tations of parallel primitives such as scan, reduce by key and stable sort by key.

One practical limitation of the method as described above is that the memory
required to store the intermediate format is potentially large. For instance, if A and B

are both square, n×n matrices with exactly K entries per row, then O(nK2) bytes of

Fine-Grained Parallelism in AMG 15

memory are needed to store T. Since the input matrices are generally large themselves
(O(nK) bytes) it is not always possible to store a K-times larger intermediate result
in memory. In the limit, if A and B are dense matrices (stored in sparse format) then
O(n3) storage is required. As a result, our implementation allocates a workspace of
bounded size and decomposes the matrix-matrix multiplication C = A ∗ B into several
smaller operations of the form C(slice,:) = A(slice,:)∗B, where slice is a subset of
the rows of A. The final result is obtained by simply concatenating the coordinate rep-
resentations of all the partial results together C = [C(slice 0,:), C(slice 1,:), . . .].
In practice this sub-slicing technique introduces little overhead because the workspace
is still large enough to fully utilize the device. We refer to the Cusp source code [6]
for additional details.

3.4. Prolongation and Restriction. The tentative prolongation, prolongation
smoothing, and restriction construction steps of Algorithm 1 (Lines 3, 4, and 5),
are also expressed with parallel primitives. The tentative prolongation operation
is constructed by gathering the appropriate entries from the near-nullspace vectors
stored in B according to the sparsity pattern defined by Agg. Then, the columns are
normalized, first by transposing the matrix, which has the effect of sorting the matrix
entries by column index, and then computing the norm of each column using the
reduce by key algorithm. Specifically, the transpose of a coordinate format matrix
such as

I =
[
0 1 2 3 4 5

]
,

J =
[
0 1 1 0 1 0

]
,

V =
[
0 0 1 1 2 2

]
,

is computed with by reordering the column indices of the matrix, and applying the
same permutation to the rows and values

TransI, Permutation = stable sort by key(J, [0, 1, 2, 3, 4])

=
[
0 0 0 1 1 1

]
,
[
0 3 5 1 2 4

]
,

TransJ = gather(Permutation, I)

=
[
0 3 5 1 2 4

]
,

TransV = gather(Permutation, V)

=
[
0 1 2 0 1 2

]
.

Then the squares of the transposed values array are calculated, followed by row sums,

Squares = tranform(TransV, TransV, multiplies)

=
[
0 1 4 0 1 4

]
,

Rows, Sums = reduce by key(TransI, Squares, multiplies)

=
[
0 1

]
,
[
9 9

]
,

which correspond to column sums of the original matrix.
Next, the final prolongator P is obtained by smoothing the columns of T according

to the formula in Section 1.2.5. Here, we apply a specialized form of the general sparse
matrix-matrix multiplication scheme described in Section 3.3. Specifically, we exploit
the special structure of the tentative prolongator, whose rows contain at most one
nonzero entry, when computing the expression AT .

16 Bell, Dalton, Olson

Finally, the transpose of the prolongation operator is calculated explicitly R =
PT , and Galerkin triple-matrix product Ak+1 = Rk(AkPk) is computed with two sep-
arate sparse matrix-matrix multiplies. As mentioned above, the transpose operation
is fast, particularly for the COO format.

4. Parallel Multigrid Cycling. After the multigrid hierarchy has been con-
structed using the techniques in Section 3, the cycling of Algorithm 3 proceeds. In
this section we describe the components of the multigrid cycling and how they are
parallelized on the GPU.

4.1. Vector Operations. In Algorithm 3, the residual vector computation and
the coarse grid correction steps require vector-vector subtraction and addition respec-
tively. While these operations could be fused with the preceding sparse matrix-vector
products for potential efficiency, or could be carried out with DAXPY in CUBLAS [14],
we have implemented equivalent routines with Thrust’s transform algorithm for sim-
plicity and to keep Cusp self-contained. Similarly, the vector norms (DNRM2) and inner
products (DDOT) that arise in multigrid cycling have been implemented with reduce

and inner product in Thrust respectively.

4.2. Sparse Matrix-Vector Multiplication. Sparse matrix-vector multipli-
cation (SpMV), which involves (potentially) irregular data structures and memory
access patterns, is more challenging to implement than the aforementioned vector
operations. Nevertheless efficient techniques exist for matrices with a wide variety of
sparsity patterns [11, 9, 38, 15, 39, 4, 5]. Our implementations of sparse matrix-vector
multiplication are described in [5, 7]. In Algorithm 3 sparse matrix-vector multipli-
cation is used to compute the residual, to restrict the fine-level residual to the coarse
grid, to interpolate the coarse-level solution onto the finer grid, and in many cases, to
implement the pre- and post-smoother.

In Section 3 we describe a method for constructing the AMG hierarchy in parallel
using the coordinate (COO) sparse matrix format. The COO format is simple to
construct and manipulate, and therefore is well-suited for the computations that arise
in the setup phase. However, the COO format is generally not the most efficient for
the SpMV operations [7]. Fortunately, once the hierarchy is constructed it remains
unchanged during the cycling phase. As a result, it is beneficial to convert the sparse
matrices stored throughout the hierarchy to an alternative format that achieves higher
SpMV performance.

In Cusp, conversions between COO and other sparse matrix formats, such as
CSR, DIA, ELL, and HYB [7], are inexpensive, as shown in Table 4.1. Here we see
that the conversion from COO to CSR is trivial, while to more structured formats
such as ELL and HYB is of minimal expense (note: the conversion to itself represents
a straight copy). When reporting performance figures in Section 5 we include the
COO to HYB conversion time in the setup phase.

From\To COO CSR ELL HYB

COO 5.09 6.35 20.10 23.55
CSR 7.80 4.03 21.61 24.84
ELL 17.02 18.26 5.90 22.32
HYB 63.27 69.40 83.08 4.12

Table 4.1
Sparse matrix conversion times (ms) for an unstructured mesh with 1M vertices and 8M edges.

Fine-Grained Parallelism in AMG 17

4.3. Smoothing. Gauss-Seidel relaxation is a popular multigrid smoother with
several attractive properties. For instance, the method requires only O(1) temporary
storage and converges for any symmetric, positive-definite matrix. Unfortunately, the
standard Gauss-Seidel scheme does not admit an efficient parallel implementation.
Jacobi relaxation is a simple and highly parallel alternative to Gauss-Seidel, albeit
without the same computational properties. Whereas Gauss-Seidel updates each un-
known immediately, Jacobi’s method updates all unknowns in parallel, and therefore
requires a temporary vector. Additionally, a weighting or damping parameter ω must
be incorporated into Jacobi’s method to ensure convergence. The weighted Jacobi
method is written in matrix form as, I − ω

ρ(D−1A)D
−1A, where D is a matrix con-

taining the diagonal elements of A. Since the expression is simply a vector operation
and a sparse matrix-vector multiply, Jacobi’s method exposes substantial fine-grained
parallelism.

We note that sparse matrix-vector multiplication is the main workhorse for several
other highly-parallel smoothers. Indeed, so-called polynomial smoothers

x← x+ P (A)r, (4.1)

where P (A) is a polynomial in matrix A, are almost entirely implemented with sparse
matrix-vector products. We refer to [1] for a comprehensive treatment of parallel
smoothers and their associated tradeoffs.

5. Evaluation. In this section we examine the performance of a GPU implemen-
tation of the proposed method. We investigate both the setup phase of Algorithm 1
and the solve phase of Algorithm 3, and find tangible speed-ups in each.

5.1. Test Platforms. The specifications of our test system are listed in Ta-
ble 5.1. Our system is configured with CUDA v4.0 [30] and Thrust v1.4 [23]. As
discussed in Section 2, Thrust provides many highly optimized GPU parallel algo-
rithms for reduction, sorting, etc. The entire setup phase, and most of the cycling
phase, of our GPU method is implemented with Thrust. As a basis for comparison,

Testbed

GPU NVIDIA Tesla C2050
CPU Intel Core i7 950

CLOCK 3.07 GHz
OS Ubuntu 10.10

Host Compiler GCC 4.4.5
Device Compiler NVCC 4.0

Table 5.1
Specifications of the test platform.

we also consider the Intel Math Kernel Library (MKL) version 10.3. MKL provides
sparse matrix-matrix multiplication as well as sparse BLAS subroutines such as sparse
matrix-vector multiplication.

The Trilinos Project provides a smoothed aggregation-based AMG preconditioner
for solving large, sparse linear systems in the ML package [17]. In our comparison,
we use Trilinos version 10.6 and specifically ML version 5.0 for the solver. The ML
results are presented in order to provide context for the performance of our solver in
comparison to a well-known software package.

18 Bell, Dalton, Olson

5.2. Model Problem. Table 5.2 describes the sparse matrices considered in
our performance evaluation. We present results on both structured and unstructured
grids derived from a tessellation of the unit square, unit cube, and horseshoe. The
unstructured meshes are constructed with no inherent structure and the nature of the
tessellation is reflected in the sparse matrix, where block and banded patterns are
not easily deduced, as they are in the structured case. We consider this case here,
since many preconditioners rely on the structured nature of the problem, whereas
one advantage of AMG is its relative indifference to matrix structure. Additionally,
we also study anisotropic rotated diffusion with an angle of rotation of π/6 and a
diffusion coefficient of 10−3 for two meshes, 5a. and 5b. in Table 5.2, using θ = 0.08
for the symmetric strength-of-connection measure.

The problem we consider is a 2D and 3D Poisson problem with Dirichlet boundary
conditions. Since AMG is known to perform well on such problems, this choice allows
us to focus directly on the efficiency of the parallel implementation, rather than on
the merits of AMG as a preconditioner.

Matrix Unknowns Nonzeros

1a. 2D FD, 5-point 1,048,576 5,238,784
1b. 2D FE, 9-point 1,048,576 9,424,900
2a. 3D FD, 7-point 1,030,301 7,150,901
2b. 3D FE, 27-point 1,030,301 27,270,901
3a. 2D FE, h ≈ 0.03 550,387 3,847,375
3b. 2D FE, h ≈ 0.02 1,182,309 8,268,165
3c. 2D FE, h ≈ 0.015 2,185,401 15,287,137
4. 3D FE, h ≈ 0.15 1,088,958 17,095,986
5a. 2D FE, horseshoe 853,761 5,969,153
5b. 2D FE, square 832,081 5,817,905

Table 5.2
Details of the model problem. Here h represents an average mesh diameter for the tessellation.

5.3. Component Performance. Table 5.4 reports timings for sparse matrix-
vector multiplication, sparse matrix transposition, and sparse matrix-matrix mul-
tiplication using MKL and Cusp for the CPU and GPU results, respectively. All
computations use double precision (64-bit) floating point arithmetic. The timings in
Tables 5.3 and 5.4 are reported in milliseconds, averaged over 100 operations.

Table 5.3 demonstrates the performance of the level 1 BLAS functions DDOT and
DAXPY, which are applied frequently during the cycling phase of the solver. These
algorithms execute very few arithmetic operations per memory access and are there-
fore limited by the available memory bandwidth. For the largest input size the GPU
achieves a maximum speedup of 7.8× in DDOT. On the smallest input size, the GPU
results in a more modest speedup of 3.3× in DDOT, which is attributed to fixed costs
in our implementation. In contrast, the DAXPY speedup is relatively constant across
input sizes and simply reflects the relative memory bandwidth of the two processors.

Sparse matrix-vector multiplication operations are used heavily in the cycling
phase of the solver (cf. Algorithm 3) and to a lesser extent in the setup phase (cf.
Algorithm 1) as well. Table 5.4 reports SpMV timings using the Hybrid (HYB)
format on the GPU and Compressed Sparse Row (CSR) format on the CPU. As with

Fine-Grained Parallelism in AMG 19

DDOT DAXPY

Size CPU GPU Speedup CPU GPU Speedup

1M 17.00 55.42 3.3 17.69 120.55 6.8
2M 17.59 78.15 4.4 18.05 121.32 6.7
4M 17.70 97.33 5.5 18.29 121.50 6.6
8M 17.96 110.44 6.2 18.27 121.28 6.6

16M 17.61 118.76 6.7 18.11 120.79 6.7
32M 15.81 123.48 7.8 17.78 120.25 6.8

Table 5.3
DDOT and DAXPY bandwidth (GB/s).

level 1 BLAS operations, the SpMV operation performs few arithmetic operations per
memory access and is memory bound. However, sparse matrix-vector multiplication
performance is also sensitive to the sparsity structure of the matrix, as it impacts
the locality of memory accesses and creates potential variation in the amount of
work per thread. Therefore, SpMV does not always saturate memory bandwidth to
the same degree as algorithms with simpler memory access patterns such as DAXPY

(see [5, 7] for a more detailed study of GPU SpMV performance). Across the cases
considered, the GPU achieves an average speedup of 5.9× in comparison to the CPU.
Figure 5.5 demonstrates that although the CPU SpMV performance does benefit from
multi-threading; the marginal speedup diminishes rapidly as the available memory
bandwidth is saturated.

SpMV Transpose RAP
Matrix CPU GPU CPU GPU CPU GPU

1a. 2D FD 6.5 0.8 8.2 27.3 9.7 2.8 245.2 186.8 1.3
1b. 2D FE 9.5 1.3 7.2 25.8 10.1 2.6 345.3 286.4 1.2
2a. 3D FD 8.0 1.0 8.1 39.5 14.5 2.7 664.9 432.9 1.5
2b. 3D FE 23.0 3.4 6.7 47.6 16.7 2.9 1314.7 1289.7 1.0
3a. 2D FE 4.2 0.9 4.8 15.0 5.8 2.6 255.4 125.3 2.0
3b. 2D FE 8.9 1.7 5.3 33.7 11.2 3.0 548.3 270.5 2.0
3c. 2D FE 16.8 3.2 5.3 68.7 20.1 3.4 1037.0 497.1 2.1
4. 3D FE 16.3 6.5 2.5 52.6 17.7 3.0 1704.8 1042.1 1.6
5a. 2D FE 8.6 1.4 6.3 29.0 10.4 2.8 493.5 285.4 1.7
5b. 2D FE 10.1 1.9 5.2 38.8 10.0 3.9 588.2 242.6 2.4

Table 5.4
SpMV time / Transpose time / Galerkin Product time and speedups on the GPU in bold.

A sparse matrix transpose operation is used at each level of in the setup phase
(cf. Algorithm 1) to obtain the restriction operator Rk = PTk from the prolonga-
tion operator Pk. Our parallel algorithm for transpose is 3.0× faster than MKL on
average. We note that the MKL transpose does not benefit from multithreading, sug-
gesting the that underlying implementation is sequential. Indeed, our own sequential
implementation of sparse matrix transpose offers equivalent performance.

The Galerkin Product results represent the cost of constructing the coarse-grid
matrix by performing two sparse matrix-matrix multiplication operations. Whereas
the cost of other components, such as BLAS algorithms, is directly proportional to

20 Bell, Dalton, Olson

1 2 3 4
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G
F

L
O

P
/s

1a

1b

2a

2b

3a

3b

3c

4

5a

5b

Fig. 5.5. MKL SpMV GFlops per matrix for a varying number of threads.

the input size, the cost of sparse matrix-matrix multiplication is dependent on the
specific sparsity patterns of the two matrices and can differ between inputs of the
same size. Our sparse matrix-matrix multiplication algorithm achieves better per-
formance than MKL in all cases considered, with an average speedup of 1.7×. As
with the transpose, MKL’s sparse matrix-matrix multiplication functionality extracts
no observable benefit from multithreading and offers inferior performance to our own
sequential implementation based on the SMMP method [3]. As a result, the CPU
performance results in the remainder of this section only use MKL for sparse matrix-
vector multiplication.

5.4. Setup Phase Performance. Section 5.3 demonstrates that GPU imple-
mentations of the essential sparse matrix operations achieve tangible speedups over a
competent CPU implementations. In this section we analyze the performance of the
whole multigrid setup phase (cf. Algorithm 1).

Figure 5.6 shows a breakdown of the parallel setup phase into the individual com-
ponents. The figure identifies several intensive calculations in the algorithm, namely
aggregation and the Galerkin product. As anticipated, the ability to express the
strength-of-connection, tentative prolongator construction, and prolongator smooth-
ing functions in terms of parallel primitives leads to a efficient execution on the GPU.
Moreover, the figure also shows that matrix conversion is a relatively low cost, en-
abling the use of SpMV-optimized matrix formats in the subsequent cycling phase.
Moreover, the conversion to HYB format is independent of the other operations and
may be performed at any time prior to the solve phase. Since matrix conversions
are not performed in-place there are two versions of A in memory and all operations
utilize the COO format as input.

The Galerkin product, which is implemented with two sparse matrix-matrix mul-
tiplications R ∗ (A ∗ P), is the most expensive step in all cases considered. The relative
cost of the Galerkin product is slightly higher in the 3D matrix examples (2a, 2b, and
4) compared to the 2D cases.

In Table 5.7, as a baseline, we also include timings from the ML package of Trilinos
on the same hardware; this validates that our CPU approach is in-fact a competitive
implementation. ML is configured using the default parameters in the setup phase
and a Jacobi smoother in the solve phase, as opposed to the default symmetric Gauss-
Seidel smoother. We use a damping factor of 5

7 in the 3D problems as recommended in
[17] for the Jacobi smoother. The GPU implementation is faster in all ten examples,

Fine-Grained Parallelism in AMG 21

0 10 20 30 40 50 60 70 80 90 100
Percent Time

1a

1b

2a

2b

3a

3b

3c

4

5a

5b

M
at

ri
x

L
ab

el

Strength

Aggregation

Tentative

Conversion

Spectral Radius

Smooth

Transpose

Galerkin Product

323.55

495.14

616.47

2103.16

231.55

480.79

879.60

1605.43

493.08

476.98

T
ot

al
T

im
e

(m
s)

Fig. 5.6. Relative time on the GPU of each setup phase component on the finest grid level.

with an average speedup of 1.8× over the CPU reference.

Matrix CPU GPU Speedup Trilinos-ML

1a. 2D FD 868 490 1.8 2040
1b. 2D FE 1062 611 1.7 2298
2a. 3D FD 1624 914 1.8 2906
2b. 3D FE 2849 2212 1.3 4420
3a. 2D FE 638 323 2.0 1324
3b. 2D FE 1436 619 2.3 2785
3c. 2D FE 2811 1047 2.7 5236
4. 3D FE 3092 1811 1.7 4967
5a. 2D FE 1653 1464 1.1 –
5b. 2D FE 1583 904 1.8 –

Table 5.7
AMG setup time for all components (ms).

5.5. Solve Phase Performance. In this section we present the results of our
AMG preconditioned CG solver for each matrix in our test suite. The AMG precon-
ditioner uses a single iteration of weighted Jacobi at the of pre- and post-smoothing
steps of the V-cycle. The Trilinos data was collected using the default uncoupled
aggregation method with a tolerance of 10−12 and a maximum of 500 iterations.

Figure 5.8 shows that the main cost of the cycling is in restriction, prolongation,
post-smoothing, and the computation of the residual, which are all sparse matrix-
vector multiplication operations. Moreover, pre-smoothing is less costly than post-
smoothing because we exploit the fact that x is initially zero and replace the smoother
x← x+D−1r, with the equivalent expression x← D−1b, with a savings of one sparse
matrix-vector multiply. Furthermore, Figure 5.9 also shows that the entire AMG
cycling is on the order of several matrix vector products, A ∗ p.

Table 5.10 presents the results of the solve phase performance of our CPU and
GPU implementations in addition to results from Trilinos ML. The performance of
ML is predictably poor because the solve phase is executed on a single core, therefore
in each iteration the SpMV operation, optimized for distributed execution, incurs
considerable overhead. The increase in the number of iterations required by the

22 Bell, Dalton, Olson

0 10 20 30 40 50 60 70 80 90 100
Percent Time

1a

1b

2a

2b

3a

3b

3c

4

5a

5b

M
at

ri
x

L
ab

el

Presmooth

Residual

AXPBY

Restrict

Prolongate

AXPY

Postsmooth

3.71

4.66

5.22

12.42

3.50

7.51

14.45

21.07

6.38

8.13

T
ot

al
T

im
e

P
er

It
er

at
io

n
(m

s)

Fig. 5.8. GPU V-cycle time breakdown on the finest grid level.

0 10 20 30 40 50 60 70 80 90 100
Percent Time

1a

1b

2a

2b

3a

3b

3c

4

5a

5b

M
at

ri
x

L
ab

el

A*p

DOTC

AXPY

AXPY

AMG

DOTC

AXPBY

7.57

8.56

10.90

18.69

6.69

13.29

24.74

33.22

14.45

15.33

T
ot

al
T

im
e

(m
s)

Fig. 5.9. Total preconditioned solver time breakdown time on the GPU.

GPU reflects the fact that, on structured problems, sequential aggregation method
fortuitously selects square-shaped aggregates, while the parallel aggregation method
based on MIS(2) creates irregularly shaped aggregates. Despite the increase in the
number of iterations performed on the device, the increased SpMV performance using
the HYB format allows the GPU to outperform the CPU in all cases.

The larger number of iterations required to solve the anisotropic problems — i.e.,
5a. 2D FEand 5b. 2D FE — on both the CPU and GPU reflects a weakness of
the simple strength-of-connection measure considered in this paper. Since our focus
is on exposing fine-grained parallelism in a well-known algebraic multigrid method,
we remark that more robust strength-of-connection schemes should be employed to
improve convergence for anisotropic problems [31].

In contrast with the results reported in Table 5.10, where two independent hier-
archies generated on the CPU and GPU are used in the cycling phase of the solver,
in Figure 5.11 the same multigrid hierarchy is used on both the CPU and GPU to
isolate the performance of the cycling phase per level. The results demonstrate that
the GPU is noticeably faster than the CPU on the first two or three grid levels, which
represents the vast majority of the computation in a multigrid V-cycle. The coarsest
grid levels are processed more rapidly by the CPU, owing to communication latency
and the fact that the amount of parallelism on the smaller grids is insufficient to satu-

Fine-Grained Parallelism in AMG 23

Matrix CPU GPU Speedup ML
time it. time it. (per it.) time it.

1a. 2D FD 1225 20 427 51 7.6 14190 33
1b. 2D FE 1082 16 450 46 7.6 10590 22
2a. 3D FD 1755 23 294 27 6.7 14800 31
2b. 3D FE 1679 14 483 24 5.9 13840 20
3a. 2D FE 1535 42 286 49 5.3 14020 53
3b. 2D FE 3726 47 634 54 5.8 34410 68
3c. 2D FE 7787 53 1426 65 5.8 44530 65
4. 3D FE 4343 43 1499 50 3.0 28380 47
5a. 2D FE 27697 397 4092 333 4.8 – –
5b. 2D FE 25716 369 4556 309 4.5 – –

Table 5.10
AMG-PCG GPU solve time (ms), number of solver iterations and per-iteration speedup.

rate the GPU. However, since the absolute time spent on such grids is small, the GPU
cycle is faster overall. However, the same is not necessarily true of other multigrid
cycles, such as the F- or W-cycle, which visit coarse grids more frequently than fine
grids.

0 1 2 3 4 5

10−2

10−1

100

101 1a

0 1 2 3 4 5

10−2

10−1

100

101
1b

0 1 2 3
10−2

10−1

100

101

2a

0 1 2 3

10−1

100

101

2b

0 1 2 3 4

10−2

10−1

100

101 3a

0 1 2 3 4
Level

10−2

10−1

100

101
3b

0 1 2 3 4
Level

10−2

10−1

100

101

3c

0 1 2 3
Level

10−2

10−1

100

101

4

0 1 2 3 4 5 6
Level

10−2

10−1

100

101
5a

0 1 2 3 4 5
Level

10−2

10−1

100

101
5b

Fig. 5.11. CPU(blue) vs GPU(green) solve phase time(ms) per level.

5.6. Scalability. One important feature of a successful multigrid method is the
ability to scale linearly with matrix size n. Consequently, we expect our algorithm to
also exhibit this scaling in observed setup and solve times. Here we consider a Example
1a above — i.e., the 2D structured Poisson problem — where algebraic multigrid is
known to scale linearly. The problem size is scaled equally in each coordinate direction,
and we measure the wall-clock time of both the setup and solve phase.

24 Bell, Dalton, Olson

The results are highlighted in Figures 5.12 and 5.13. As shown in Figures 5.12a
and 5.13a, we observe sub-linear scaling before the GPU is saturated, and the expected
linear scaling after the problem size is sufficiently large. The fortuitous sublinear
growth is consistent with other algorithms that utilize primitives on the GPU — e.g.,
see [29]. Indeed, as depicted in Figures 5.12b and 5.13b, if we measure the growth
rate r of time dependence O(nr) over a window of five samples, the scaling settles at
a linear relationship.

104 105 106

Matrix Dimension n

100

101

102

Ti
m

e
t

(m
s)

O(
√
n)

O(n)
O(n2)

measured

(a) Measured setup time in comparison
to O(

√
n), O(n), O(n2).

104 105 106

Matrix Dimension n

0.0

0.5

1.0

1.5

2.0

G
ro

w
th
r

(b) Approximate rate of growth r in
O(nr).

Fig. 5.12. 2D structured setup scalability test.

104 105 106 107

Matrix Dimension n

100

101

102

103

Ti
m

e
t

(m
s)

O(
√
n)

O(n)

O(n2)

measured

(a) Measured solve time in comparison
to O(

√
n), O(n), O(n2).

104 105 106 107

Matrix Dimension n

0.0

0.5

1.0

1.5

2.0

G
ro

w
th
r

(b) Approximate rate of growth r in
O(nr).

Fig. 5.13. 2D structured solve scalability test.

6. Conclusions. We have demonstrated the first implementation of AMG that
exposes fine-grained parallelism at all stages of the setup and cycling phases. In
particular, we have described highly-parallel methods for sparse matrix-matrix mul-
tiplication and aggregation. Furthermore, we have shown that parallel primitives
are a viable substrate to describing complex sparse matrix operations and targeting
the GPU.

Building upon earlier work in sparse matrix-vector multiplication, we have demon-
strated meaningful speedup in both the setup and cycling phases of the AMG solver
on structured and unstructured problems. Whereas CPU implementations of major
components such as sparse matrix-vector multiplication, sparse matrix-matrix mul-
tiplication, and sparse matrix transposition, derive little or no benefit from multi-
threading, our implementations leverage scalable parallel primitives.

Fine-Grained Parallelism in AMG 25

Appendix. Distance-k Maximal Independent Sets.

In this section we describe an efficient parallel algorithm for computing distance-
k maximal independent sets, denoted MIS(k) and defined in Definition 3.1. We be-
gin with a discussion of the standard distance-1 maximal independent set — i.e.,
MIS(1) — and then detail the generalization to arbitrary distances. Our primary in-
terest is in computing a MIS(2) to be used in the parallel aggregation scheme discussed
in Section 3.2.

Computing a distance-1 maximal independent set is straightforward in a serial
setting, as shown by Algorithm 4. The algorithm is greedy and iterates over nodes,
labeling some as MIS nodes and their neighbors as non-MIS nodes. Specifically,
all nodes are initially candidates for membership in the maximal independent set s
and labeled (with value 0) as undecided. When a candidate node is encountered it is
labeled (with value 1) as a member of the MIS, and all candidate neighbors of the MIS
node are labeled (with value −1) as being removed from the MIS. Upon completion,
the candidate set is empty and all nodes are labeled with either a −1 or 1.

Algorithm 4: MIS serial

parameters: A, n×n sparse matrix
return: s, independent set

I = {0, . . . , n− 1} {initial candidate index set}

s← 0 {initialize to undecided}

for i ∈ I {for each candidate}

if si = 0 {if unmarked...}
si = 1 {add to candidate set}

for j such that Aij 6= 0
sj = −1 {remove neighbors from candidate set}

s = {i : si = 1} {return a list of MIS nodes}

Computing maximal independent sets in parallel is challenging, but several meth-
ods exist. With k = 1, our parallel version in Algorithm 5 can be considered a variant
of Luby’s method [27] which has been employed in many codes such as ParMETIS [24].
A common characteristic of such schemes is the use of randomization to select inde-
pendent set nodes in parallel.

As with the serial method, all nodes are initially labeled (with a 0) as a candidate
for membership in the MIS s. Additionally, each node is assigned a random value in
the array v. The purpose of the random value is to create disorder in the selection of
nodes, allowing many nodes to be added to the independent set at once. Specifically,
the random values represent the precedence in which nodes are considered for mem-
bership in the independent set. In the serial method this precedence is implicit in the
graph ordering. Figure A.1 illustrates a two-dimensional graph with random values
values drawn from integers in [0, n = 36).

The algorithm iterates until all nodes have been labeled with a −1 or 1, classifying
them as a non-MIS node or MIS node respectively. In each iteration, an array T of 3-
tuples is created, tying together the node state — i.e., −1, 0, or 1 — the node’s random
value, and the linear index of the node. In a second phase, the nodes compute, in
parallel, the maximum tuple among the neighbors. Given two tuples ti = (si, vi, i) and
tj = (sj , vj , j) the maximum is determined by a lexicographical ordering of the tuples.

26 Bell, Dalton, Olson

Algorithm 5: MIS parallel

parameters: A, n×n sparse matrix; k, edge distance
return: s, independent set

I = {0, . . . , n− 1}
s← 0 {initialize state as undecided}

v ←random {initialize value}

while {i ∈ I : si = 0} 6= ∅
for i ∈ I {for each node in parallel}

Ti ← (si, vi, i) {set tuple (state,value,index)}

1 for r = 1, . . . , k {propagate distance k}

for i ∈ I {for each node in parallel}

t← Ti
for j such that Aij 6= 0

t← max(t, Tj) {maximal tuple among neighbors}

T̂i ← t

T = T̂

2 for i ∈ I {for each node in parallel}

(smax, vmax, imax)← Ti
if si = 0 {if unmarked...}

if imax = i {if maximal...}
si ← 1 {add to set}

else if smax = 1 {otherwise...}
si ← −1 {remove from set}

s = {i : si = 1} {return a list of MIS nodes}

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

(a) Natural enumeration.

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(b) Random enumeration.

Fig. A.1. A structured graph with a natural order of nodes and a randomized enumeration.

This ordering ensures that MIS nodes have a priority over candidate nodes and that
candidate nodes have priority over non-MIS nodes. In the third phase, the candidate
node states are updated based on the results of the second phase. Candidate nodes
that are the local maximum — i.e., Imax = i — are added to the independent set while
those with an existing MIS neighbor — i.e., Imax 6= i and smax = 1 — are removed
from candidacy. Since it is impossible for two neighboring nodes to be local maxima,
the selected nodes are independent by construction. Furthermore, the correctness of
the algorithm does not depend on the random values. Indeed, if all the random values
are 0, the algorithm degenerates into the serial algorithm since the third component
of the tuple, the node index, establishes precedence among neighbors with the same

Fine-Grained Parallelism in AMG 27

random value. In each iteration of the algorithm at least one candidate node’s state
is changed, so termination is assured. Figure A.2 illustrates the classification of nodes
during six iterations of the parallel algorithm.

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(a)

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(b)

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(c)

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(d)

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(e)

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(f)

Fig. A.2. Parallel MIS construction for k = 1.

Note that the parallelism in Algorithm 5 fine-grained, exposing one thread of in-
dependent execution per node within each parallel for loop. The first and third phases
are simple elementwise vector operations which are carried out with the transform

algorithm in our implementation. The second stage, which propagates the maximal
tuples, is implemented with a generalization of sparse matrix-vector multiplication.
In either case there is an implicit global synchronization among threads upon exiting
the parallel for loop over nodes.

Generalizing the parallel distance-1 maximal independent set algorithm to com-
pute MIS(k) for arbitrary k can be accomplished in several ways. One solution is
to compute the k-th power of A as an explicit matrix AK = A ∗ A ∗ . . . A using
sparse matrix-matrix multiplication, and then to apply the standard distance-1 maxi-
mal independent set algorithm. However, computing Ak explicitly is computationally
expensive and the storage for Ak grows rapidly with k. An alternative approach,
which is generally superior, uses k > 1 in Algorithm 5 so that maximum tuples are
propagated k times using A, which has the same effect as one step of Ak. Line 1 of
Algorithm 5 illustrates this scheme, with an additional optimization in the form of a
second state-update pass. The second update pass on Line 2 exploits the fact that
many nodes can be immediately classified based on the results of the first pass with-
out another iteration. Specifically, nodes whose maximum neighbor was classified as
an independent set node — i.e., snmax = 0 — can be safely removed from candidacy.
This optimization generally reduces the number of outer iterations by anticipating
and efficiently applying the effect of the next iteration. An example of distance-2 MIS
is depicted in Figure A.3.

In our implementation of Algorithm 5 the random values are produced by a hash
function, vi = hash(i), where hash is a simple integer hash function. Although not
a source of high quality random numbers, the resulting values are adequate for our
purpose. More sophisticated hash-based random number generators are discussed in
[36, 40].

28 Bell, Dalton, Olson

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(a)

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(b)

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

9 21 35 22 26 27

18 25 33 8 0 23

3 14 13 17 10 6

19 34 7 4 11 29

2 28 12 31 16 1

30 5 20 15 32 24

(c)

Fig. A.3. Parallel MIS construction for k = 2.

Figure A.4 shows the results of an empirical test of our MIS(2)-based aggrega-
tion algorithm. We compare the convergence rate of a solver constructed with the
standard serial aggregation algorithm against the convergence rate of a solver con-
structed with our parallel aggregation algorithm when applied to a small 2D Poisson
problem. In each trial the rows and columns of the matrix are permuted randomly
using a high-quality pseudo-random number generator and a two-level hierarchy is
constructed from using the serial and parallel aggregation schemes on the permuted
matrix. Randomly permuting the matrix has the effect of randomizing the order in
which the sequential aggregation algorithm visits nodes.

0.72 0.74 0.76 0.78 0.80
convergence factors

0

200

400

600

800

1000

1200

1400

1600

fr
eq

u
en

cy

Serial

Parallel

Fig. A.4. Distribution of convergence factors for serial and parallel aggregation methods.

The close agreement of the two distributions offers empirical evidence that our
hash-based randomization method is adequate for the purpose of computing aggre-
gates in parallel. Indeed, the average (mean) convergence rates of the serial and
parallel methods are 0.7582 and 0.7580 respectively.

REFERENCES

[1] Mark Adams, Marian Brezina, Jonathan Hu, and Ray Tuminaro, Parallel multigrid
smoothing: polynomial versus Gauss-Seidel, J. Comput. Phys., 188 (2003), pp. 593–610.

[2] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, Challenges of scaling algebraic
multigrid across modern multicore architectures, in Proceedings of the 25th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2011), 2011.

[3] Randolph E. Bank and Craig C. Douglas, Sparse matrix multiplication package (SMMP),
Advances in Computational Mathematics, 1 (1993), pp. 127–137.

[4] Muthu Manikandan Baskaran and Rajesh Bordawekar, Optimizing sparse matrix-vector
multiplication on GPUs, IBM Research Report RC24704, IBM, Apr. 2009.

Fine-Grained Parallelism in AMG 29

[5] Nathan Bell and Michael Garland, Efficient sparse matrix-vector multiplication on CUDA,
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[6] , CUSP : Generic parallel algorithms for sparse matrix and graph computations. http:

//code.google.com/p/cusp-library/, 2009-.
[7] Nathan Bell and Michael Garland, Implementing sparse matrix-vector multiplication on

throughput-oriented processors, in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, New York, NY, USA, 2009, ACM,
pp. 18:1–18:11.

[8] Guy E. Blelloch, Vector models for data-parallel computing, MIT Press Cambridge, Mass,
1990.

[9] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder, Sparse matrix solvers on
the GPU: conjugate gradients and multigrid, ACM Trans. Graph., 22 (2003), pp. 917–924.

[10] Edmond Chow, Robert D. Falgout, Jonathan J. Hu, Raymond S. Tuminaro, and Ul-
rike Meier Yang, A survey of parallelization techniques for multigrid solvers, Parallel
processing for scientific computing, (2006), pp. 179–202.

[11] Matthias Christen, Olaf Schenk, and Helmar Burkhar, General-purpose sparse matrix
building blocks using the NVIDIA CUDA technology platform, in First Workshop on Gen-
eral Purpose Processing on Graphics Processing Units, Northeastern Univ., Boston, 2007.

[12] Andrew J. Cleary, Robert D. Falgout, Van Emden Henson, Jim E. Jones, Thomas A.
Manteuffel, Stephen F. McCormick, Gerald N. Miranda, and John W. Ruge, Ro-
bustness and scalability of algebraic multigrid, SIAM Journal on Scientific Computing, 21
(2000), pp. 1886–1908.

[13] Jonathan M. Cohen and M. Jeroen Molemaker, A fast double precision CFD code us-
ing CUDA, in 21st International Conference on Parallel Computational Fluid Dynamics
(ParCFD2009), 2009.

[14] NVIDIA Corporation, Cublas library, May 2010. version 3.1.
[15] Eduardo F. DAzevedo, Mark R. Fahey, and Richard T. Mills, Vectorized sparse matrix

multiply for compressed row storage format, in International Conference on Computational
Science (ICCS), Springer, 2005, pp. 99–106.

[16] Michael Garland and David B. Kirk, Understanding throughput-oriented architectures,
Commun. ACM, 53 (2010), pp. 58–66.

[17] Michael W. Gee, Christopher M. Siefert, Jonathan J. Hu, Ray S. Tuminaro, and
Mario G. Sala, ML 5.0 smoothed aggregation user’s guide, Tech. Report SAND2006-
2649, Sandia National Laboratories, 2006.

[18] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick S. McCormick,
Hilmar Wobker, Christian Becker, and Stefan Turek, Using GPUs to improve multi-
grid solver performance on a cluster, International Journal of Computational Science and
Engineering, 4 (2008), pp. 36–55.

[19] Nolan Goodnight, Gregory Lewin, David Luebke, and Kevin Skadron, A multigrid solver
for boundary value problems using programmable graphics hardware, in HWWS ’03: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
Aire-la-Ville, Switzerland, Switzerland, 2003, Eurographics Association, pp. 102–111.

[20] Fred G. Gustavson, Two fast algorithms for sparse matrices: Multiplication and permuted
transposition, ACM Trans. Math. Softw., 4 (1978), pp. 250–269.

[21] G. Haase, M. Liebmann, G. Plank, and C. Douglas, Parallel algebraic multigrid on general
purpose gpus, in 3rd Austrian Grid Symposium, J. Volkert et al, ed., 2010, pp. 28–37.

[22] Van Emden Henson and Ulrike Meier Yang, Boomeramg: A parallel algebraic multigrid
solver and preconditioner, Applied Numerical Mathematics, 41 (2002), pp. 155 – 177.

[23] Jared Hoberock and Nathan Bell, Thrust: A parallel template library, 2011. Version 1.4.0.
[24] George Karypis and Vipin Kumar, Parallel multilevel k-way partitioning scheme for irregular

graphs, SIAM Review, 41 (1999), pp. 278–300.
[25] Michael Kazhdan and Hugues Hoppe, Streaming multigrid for gradient-domain operations

on large images, in ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, New York, NY, USA,
2008, ACM, pp. 21:1–21:10.

[26] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic Linear Algebra
Subprograms for Fortran Usage, ACM Transactions on Mathematical Software (TOMS),
5 (1979), pp. 308–323.

[27] Michael Luby, A simple parallel algorithm for the maximal independent set problem, SIAM
J. Comput., 15 (1986), pp. 1036–1055.

[28] Duane Merrill and Andrew Grimshaw, Parallel scan for stream architectures, Tech. Report
CS2009-14, University of Virginia, Department of Computer Science, Charlottesville, VA,
USA, 2009.

30 Bell, Dalton, Olson

[29] Duane G. Merrill and Andrew S. Grimshaw, Revisiting sorting for gpgpu stream architec-
tures, Tech. Report CS2010-03, University of Virginia, Department of Computer Science,
Charlottesville, VA, USA, 2010.

[30] NVIDIA Corporation, NVIDIA CUDA Programming Guide, May 2011. Version 4.0.
[31] Luke N. Olson, Jacob Schroder, and Raymond S. Tuminaro, A new perspective on strength

measures in algebraic multigrid, Numerical Linear Algebra with Applications, 17 (2010),
pp. 713–733.

[32] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid methods, vol. 3 of Frontiers
Appl. Math., SIAM, Philadelphia, PA, 1987, pp. 73–130.

[33] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens, Scan primitives
for GPU computing, in Graphics Hardware 2007, ACM, Aug. 2007, pp. 97–106.

[34] Markus Stürmer, Harald Köstler, and Ulrich Rüde, How to optimize geometric multigrid
methods on gpus, in 15th Copper Mountain Conference on Multigrid Methods, March 2011.

[35] Ray S. Tuminaro and Charles Tong, Parallel smoothed aggregation multigrid : Aggregation
strategies on massively parallel machines, SC Conference, 0 (2000), p. 5.

[36] Stanley Tzeng and Li-Yi Wei, Parallel white noise generation on a gpu via cryptographic
hash, in Proceedings of the 2008 symposium on Interactive 3D graphics and games, ACM,
2008, pp. 79–87.

[37] Petr Vaněk, Jan Mandel, and Marian Brezina, Algebraic Multigrid by Smoothed Aggrega-
tion for Second and Fourth Order Elliptic Problems, Computing, 56 (1996), pp. 179–196.

[38] Richard W. Vuduc and Hyun-Jin Moon, Fast Sparse Matrix-Vector Multiplication by Ex-
ploiting Variable Block Structure, in High Performance Computing And Communications:
First International Conference, HPCC 2005, Sorrento, Italy, September 21-23, 2005: Pro-
ceedings, Springer, 2005.

[39] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel, Optimization of sparse matrix-vector multiplication on emerging multicore
platforms, in Proc. 2007 ACM/IEEE Conference on Supercomputing, 2007.

[40] Fahad Zafar, Marc Olano, and Aaron Curtis, Gpu random numbers via the tiny encryp-
tion algorithm, in Proceedings of the Conference on High Performance Graphics, Euro-
graphics Association, 2010, pp. 133–141.

