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Algebraic Multigrid for k-form Laplacians
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SUMMARY

In this paper we describe an aggregation-based algebraic multigrid method for the solution of discrete
k-form Laplacians. Our work generalizes Reitzinger and Schöberl’s algorithm to higher dimensional
discrete forms. We provide conditions on the tentative prolongators under which the commutativity
of the coarse and fine de Rham complexes is maintained. Further, a practical algorithm that satisfies
these conditions is outlined and smoothed prolongation operators and the associated finite element
spaces are highlighted. Numerical evidence of the efficiency and generality of the proposed method is
presented in the context of discrete Hodge decompositions. Copyright c© 2000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Discrete differential k-forms arise in scientific disciplines ranging from computational
electromagnetics to computer graphics. Examples include stable discretizations of the eddy-
current problem [23, 6, 2], topological methods for sensor network coverage [8], visualization
of complex flows [18, 20], and the design of vector fields on meshes [10].

In this paper we consider solving problems of the form,

δdαk = βk, (1)

where d denotes the exterior derivative and δ the codifferential relating k-forms α and β.
For k = 0, 1, 2, δd is also expressed as ∇ · ∇, ∇ × ∇×, and ∇∇· respectively. We refer
to operator δd generically as a Laplacian, although it does not correspond to the Laplace-
de Rham operator ∆ = dδ+δd except for the case k = 0. We assume that (1) is discretized with
mimetic first-order elements such as Whitney forms [22, 7] on simplicial meshes or the analog on
hexahedral [5] or polyhedral elements [12]. In general we use Ik to denote the map from discrete
k-forms (cochains) to their respective finite elements. Such discretizations give rise to a discrete
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2 N. BELL AND L. OLSON

Figure 1: Enumeration of nodes (left), oriented edges (center), and oriented triangles(right) for
a simple triangle mesh. We say that vertices 2 and 3 are upper-adjacent since they are joined
by edge 4. Similarly, edges 5 and 6 are both faces of triangle 2 and therefore upper-adjacent.

exterior k-form derivative Dk and discrete k-form innerproduct Mk(i, j) =<Ikei, Ikej>, which
allows implementation of (1) in weak-form as

DT
k Mk+1Dkx = b, (2)

under the additional assumption that d commutes with I, i.e. Ik+1Dk = dkIk. This
relationship is depicted as

Ωk dk- Ωk+1

Ωk
d

Ik

6

Dk- Ωk+1
d

Ik+1

6

(3)

where Ωk and Ωk
d denote the spaces of differential k-forms and discrete k-forms respectively.

For the remainder of the paper we restrict our attention to solving (2) on structured or
unstructured meshes of arbitrary dimension and element type, provided that the elements
satisfy the aforementioned commutativity property.

1.1. Example

Although our results hold more generally, it is instructive to examine a concrete example that
satisfies the assumptions set out in Section 1. To this end, consider the three element simplicial
mesh depicted in Figure 1, with the enumeration and orientation of vertices, edges, and
triangles as shown. In this example, we choose Whitney forms [22] to define the interpolation
operators I0, I1, I2 which in turn determine the discrete innerproducts M0,M1.M2. Finally,
sparse matrices

D−1 =


0
0
0
0
0

 , D0 =



−1 1 0 0 0
−1 0 0 1 0
0 −1 1 0 0
0 −1 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1


, (4)
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Figure 2: Forms I0α0, I1D0α
0, and I1β1 where I denotes Whitney interpolation. The left

and center figures illustrate property (3). Whether the derivative is applied before or after
interpolation, the result is the same.

D1 =

1 −1 0 1 0 0 0
0 0 1 −1 1 0 0
0 0 0 0 −1 1 −1

 , D2 =
[
0 0 0

]
, (5)

implement the discrete k-form derivative operators. A discrete k-form (cochain), denoted αk,
is represented by a column vector with entries corresponding to each of the k-simplices in the
mesh. For example, the Whitney-interpolated fields corresponding to α0 = [0, 1, 2, 1, 2]T , the
gradient D0α

0 = [1, 1, 1, 0,−1, 0, 1]T , and another 1-form β1 = [1, 0, 1, 0, 0, 1, 0]T are shown in
Figure 2. By convention D−1 and D2 are included to complete the exact sequence.

1.2. Related Work

There is significant interest in efficient solution methods for Maxwell’s eddy-current problem

∇×∇× ~E + σ ~E = ~f. (6)

In particular, recent approaches focus on multilevel methods for both structured and
unstructured meshes [13, 3, 19, 15]. Scalar multigrid performs poorly on edge element
discretizations of (6) since error modes that lie in the kernel of ∇ ×∇× are not effectively
damped by standard relaxation methods. Fortunately, the problematic modes are easily
identified by the range of the discrete gradient operator D0, and an appropriate hybrid
smoother [13, 3] can be constructed. An important property of these multigrid methods is
commutativity between coarse and fine finite element spaces. The relationship is described as

Ω0
d

D0 - Ω1
d

Ω̂0
d

P0

6

D̂0 - Ω̂1
d

P1

6

(7)

where Ω̂k
d is the space of coarse discrete k-forms, D̂0 the coarse gradient operator, and P0 and

P1 are the nodal and edge prolongation operators respectively. Combining (7) with (3) yields
the same result for the corresponding fine and coarse finite element spaces.
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In [19] Reitzinger and Schöberl describe an algebraic multigrid method for solving (6)
on unstructured meshes. In their method, property (7) is maintained by choosing nodal
aggregates and using these aggregates to obtain compatible edge aggregates. The nodal and
edge aggregates then give rise to piecewise-constant prolongators P0 and P1, which can be
smoothed to achieve better multigrid convergence rates [15] while retaining property (7).

The method we present can be viewed as a natural extension of Reitzinger and Schöberl’s
work from 1-forms to general k-forms. Commutativity of the coarse and fine de Rham
complexes is maintained for all k-forms, and their associated finite element spaces IkΩk

d ⊂ Ωk.
The relationship is described by

Ω0
d

D0 - Ω1
d

D1 - Ω2
d . . . Ωk

d

Dk- Ωk+1
d

Ω̂0
d

P0

6

D̂0 - Ω̂1
d

P1

6

D̂1 - Ω̂2
d

P2

6

. . . Ω̂k
d

Pk

6

D̂k- Ω̂k+1
d

Pk+1

6

(8)

where Pk denotes either the tentative prolongator Pk or smoothed prolongator SkPk.

1.3. Focus and Applications

While our work is largely inspired by multigrid solvers for (6), our intended applications do
not focus specifically on the eddy-current problem. Indeed, recent work suggests that the
emphasis on multilevel commutativity, a property further developed in this paper, is at odds
with developing efficient solvers for (6) in the presence of highly variable coefficients [16].
Although our method generalizes the work of [19] and [15], this additional generality does not
specifically address the aforementioned eddy-current issues.

In Section 3 we discuss computing Hodge decompositions of discrete k-forms with the
proposed method. The Hodge decomposition is a fundamental tool in both pure and applied
mathematics that exposes topological information through differential forms. For example, the
two harmonic 1-forms shown in Figure 3 exist because the manifold has genus 1. The efficient
solution of discrete k-form Laplacians has substantial utility in computational topology. For
instance, sufficient conditions on the coverage of sensor networks reduce to the discovery of
harmonic forms on the simplicial Rips complex [8]. In such applications we do not encounter
variable coefficients and often take the identity matrix for Mk.

2. PROPOSED METHOD

2.1. Complex Coarsening

In this section we describe the construction of tentative prolongators Pk and coarse operators
D̂k which satisfy (8). In practice, the two-level commutativity depicted in (8) is extended
recursively for use in a multilevel method. Also, it is important to note that when solving (2)
for a specific k, it is not necessary to coarsen the entire complex.

As in [19], we presume the existence of a nodal aggregation algorithm which produces
a piecewise-constant tentative prolongator P0. This procedure, called aggregate nodes in

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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Figure 3: The two harmonic 1-forms of a rocker arm surface mesh.

Algorithm 1, is fulfilled by either Smoothed Aggregation [21] or a graph partitioner on matrices
DT

0 M1D0 or DT
0 D0. Ideally, the nodal aggregates are contiguous and have a small number of

interfaces with other aggregates.

Algorithm 1: coarsen complex(D−1,D0, . . . ,DN )

1 P0 ⇐ aggregate nodes (D0, . . .)
2 for k = 0 to N − 1
3 Pk+1 ⇐ i nduced aggregate s (Pk,Dk,Dk+1)
4 D̂k ⇐ (PT

k+1Pk+1)−1PT
k+1DkPk

5 end
6 D̂−1 ⇐ PT

0 D−1

7 D̂N ⇐ DNPN

8 return P0, P1, . . . , PN and D̂−1, D̂0, . . . , D̂N

2.2. Induced Aggregates

The key concept in [19], which we apply and extend here, is that nodal aggregates induce edge
aggregates; we denote P1 as the resulting edge aggregation operator. As depicted in Figure 4, a
coarse edge exists between two coarse nodal aggregates when any fine edge joins them. Multiple
fine edges between the same two coarse nodal aggregates interpolate from a common coarse
edge with weight 1 or −1 depending on their orientation relative to the coarse edge. The coarse
nodes and coarse edges define a coarse derivative operator D̂0 which satisfies diagram (7).

We now restate the previous process in an algebraic manner that generalizes to arbitrary
k-forms. Given P0 as before, form the product D = D0P0 which relates coarse nodes to fine
edges. Observe that each row of D corresponds to a fine edge and each column to a coarse
node. Notice that the i-th row of D is zero when the endpoints of fine edge i lie within the
same nodal aggregate. Conversely, the i-th row of D is nonzero when the endpoints of fine edge
i lie in different nodal aggregates. Furthermore, when two nonzero rows are equal up to a sign
(i.e. linearly dependent), they interpolate from a common coarse edge.

Therefore, the procedure of aggregating edges reduces to computing sets of linearly

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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Figure 4: Nodal aggregates (left) determine coarse edges (center) through the algorithm
induced aggregates. Fine edges crossing between node aggregates interpolate from the
corresponding coarse edge with weight 1 or −1 depending on their relative orientation. Edges
contained within an aggregate do not correspond to any coarse edge and receive weight 0.
These weights are determined by lines 10-13 of induced aggregates.

dependent rows in D. Each set of dependent rows yields a coarse edge and thus a column of
P1. In the general case, sets of dependent rows in D = DkPk are identified and used to produce
Pk+1. The process can be repeated to coarsen the entire de Rham complex. Alternatively, the
coarsening can be stopped at a specific k < N . In Section 2.5 we discuss the coarse derivative
operator D̂k ⇐ (PT

k+1Pk+1)−1PT
k+1DkPk and show that it satisfies diagram (8).

Algorithm 2: induced aggregates(Pk,Dk,Dk+1)

1 D⇐ DkPk

2 G⇐ DT
k+1Dk+1

3 V ⇐ {}
4 n⇐ 0
5

6 for i in rows(D) such that D(i, :) 6= 0
7 i f i 6∈ V
8 An ⇐ dependent rows(G,D, i)
9 for j ∈ An

10 i f D(i, :) = D(j, :)
11 Pk+1(j, n)⇐ 1
12 else
13 Pk+1(j, n)⇐ −1
14 end
15 end
16 n⇐ n+ 1
17 V ⇐ V ∪An

18 end
19 end
20 return Pk+1
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Figure 5: Example where contiguous (center) and non-contiguous (right) aggregation differs.
Contiguous aggregates are reflected through our choice of G defined in induced aggregates
and later used in dependent rows.

Intuitively, linear dependence between rows in D = DkPk indicates redundancy created
by operator Pk. Aggregating dependent rows together removes redundancy from the output
of D and compresses the remaining degrees of freedom into a smaller set of variables. By
construction, the tentative prolongators have full column rank and satisfy

R(DkPk) ⊂ R(Pk+1) (9)

where R(A) denotes the range of matrix A. Note that property (9) is clearly necessary to
satisfy diagram (8).

Using disjoint sets of dependent rows A0, A1, . . ., the function induced aggregates
constructs the aggregation operator Pk+1 described above. Non-zero entry Pk+1(i, j) indicates
membership of the i-th row of D—i.e. the i-th k+1-dimensional element—to the j-th aggregate
Aj .

2.3. Computing Aggregates

For a given row index i, the function dependent rows constructs a set of rows that are linearly
dependent to D(i, :). In the matrix graph of G, a nonzero entry G(i, j) indicates that the k+1-
dimensional elements with indices i and j are upper-adjacent [17]. In other words, i and j are
both faces of some k + 2 dimensional element. For example, two edges in a simplicial mesh
are upper-adjacent if they belong to the same triangle. All linearly dependent rows that are
adjacent in the matrix graph of G are aggregated together. This construction ensures that the
aggregates produced by dependent rows are contiguous. As shown in Figure 5, such aggregates
are more natural than those that result from aggregating all dependent rows together (i.e. using
G = D DT

).

Algorithm 3: dependent rows(G,D, i)

1 Q⇐ {i}
2 A⇐ {i}
3 while Q 6= {}
4 j ⇐ pop(Q)
5 Q⇐ Q \ {j}

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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6 for k such that G(j, k) 6= 0
7 i f k 6∈ A and D(i, :) = ±D(k, :)
8 A⇐ A ∪ {k}
9 Q⇐ Q ∪ {k}

10 end
11 end
12 end
13 return A

2.4. Example

In this section we describe the steps of our algorithm applied to the three element
simplicial mesh depicted in Figure 1. Matrices D−1,D0,D1, and D2, shown in Section 1.1,
are first computed and then passed to coarsen complex. The externally-defined procedure
aggregate nodes is then called to produce the piecewise-constant nodal aggregation operator

P0 =


1 0 0
1 0 0
0 1 0
1 0 0
0 0 1

 (10)

whose corresponding aggregates are shown in Figure 6. At this stage of the procedure, a more
general nodal problem DT

0 M1D0 may be utilized in determining the coarse aggregates. Next,
induced aggregates is invoked with arguments P0,D0,D1 and the sparse matrix

D = D0P0 =



0 0 0
0 0 0
−1 1 0
0 0 0
1 −1 0
0 −1 1
−1 0 1


, (11)

is constructed. Recall from Section 2.2 that the rows of D are used to determine the induced
edge aggregates. The zero rows of D, namely rows 0, 1, and 3, correspond to interior edges,
which is confirmed by Figure 6. Linear dependence between rows 2 and 4 indicates that
edges 2 and 4 have common coarse endpoints, with the difference in sign indicating opposite
orientations.

For each non-zero and un-aggregated row of D, dependent rows traverses

G = DT
1 D1 =



1 −1 0 1 0 0 0
−1 1 0 −1 0 0 0
0 0 1 −1 1 0 0
1 −1 −1 2 −1 0 0
0 0 1 −1 2 −1 1
0 0 0 0 −1 1 −1
0 0 0 0 1 −1 1


, (12)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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Figure 6: Original mesh with nodal aggregates (left), coarse nodes (center), and coarse edges
(right).

to find dependent rows among upper-adjacent edges. In this case, edges 3 and 4 are upper-
adjacent to 2, however only row 4 in D is linearly dependent to row 2 in D. Rows 5 and 6 of D
are not linearly dependent to any other rows, thus forming single aggregates for edges 5 and
6. The resulting aggregation operator

P1 =



0 0 0
0 0 0
1 0 0
0 0 0
−1 0 0
0 1 0
0 0 1


, (13)

is then used to produce the coarse discrete derivative operator

D̂0 = (PT
1 P1)−1PT

1 D0P0 =

−1 1 0
0 −1 1
−1 0 1

 , (14)

for the mesh in Figure 6. Subsequent iterations of the algorithm produce operators

P2 =

0
0
1

 , D̂1 = (PT
2 P2)−1PT

2 D1P1 =
[
1 1 −1

]
, D̂2 = D2P2 =

[
0
]
, (15)

which complete the coarse de Rham complex.

2.5. Commutativity

We now prove tentative prolongators P0, P1, . . . , PK and coarse derivative operators
D̂0, D̂1, . . . , D̂K produced by Algorithm 1 satisfy commutative diagram (8). The result is
summarized by the following theorem.

Theorem 1. Let Pk : Ω̂k
d → Ωk

d denote the discrete k-form prolongation operators with the
following properties

Pk+1 has full column rank (16i)
R(DkPk) ⊂ R(Pk+1) (16ii)

D̂k ⇐ (PT
k+1Pk+1)−1PT

k+1DkPk (16iii)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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Then, diagram (8) holds. That is,
DkPk = Pk+1D̂k (17)

Proof. Since Pk+1 has full column rank, the pseudoinverse is given by

P+
k+1 = (PT

k+1Pk+1)−1PT
k+1. (18)

Recall that for an arbitrary matrix A the pseudoinverse satisfies AA+A = A. Furthermore,
R(DkPk) ⊂ R(Pk+1) implies that DkPk = Pk+1X for some matrix X. Combining these
observations,

Pk+1D̂k = Pk+1P
+
k+1DkPk,

= Pk+1P
+
k+1Pk+1X,

= Pk+1X,
= DkPk

Since Algorithm 1 meets assumptions (16i),(16ii), and (16iii) it follows that diagram (8)
is satisfied. Also, assuming disjoint aggregates, the matrix (PT

k+1Pk+1) appearing in (18) is a
diagonal matrix, so its inverse is easily computed.

2.6. Exact Sequences

The de Rham complex formed by the fine-level discrete derivative operators,

0
D−1- Ω0

d

D0 - Ω1
d

D1 - . . .
DN−1- ΩN

d

DN - 0 (19)

is an exact sequence, i.e. img(Dk) ⊂ ker(Dk+1) or equivalently Dk+1Dk = 0. A natural
question to ask is whether the coarse complex retains this property. As argued in Section
2.5, DkPk = Pk+1X for some matrix X, therefore it follows

D̂k+1D̂k = P+
k+2Dk+1Pk+1P

+
k+1DkPk,

= P+
k+2Dk+1Pk+1P

+
k+1Pk+1X,

= P+
k+2Dk+1Pk+1X,

= P+
k+2Dk+1DkPk,

= 0,

since Dk+1Dk = 0 by assumption. From diagram (3) we infer the same result for the associated
finite element spaces.

2.7. Smoothed Prolongators

While the tentative prolongators P0, P1, . . . produced by coarsen complex commute with
Dk and give rise to an coarse exact sequence, their piecewise-constant nature leads to
suboptimal multigrid scaling [19, 15]. In Smoothed Aggregation [21], the tentative prolongator
P is smoothed to produce another prolongator P = SP with superior approximation
characteristics. We consider prolongation smoothers of the form S = (I − SA). Possible

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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implementations include Richardson S = ωI, Jacobi S = ω diag(A)−1, and polynomial
S = p(A) [1].

Smoothed prolongation operators are desirable, but straightforward application of smoothers
to each of P0, P1, . . . violates commutativity. The solution proposed in [15] smooths P0 and
P1 with compatible smoothers S0,S1 such that commutativity of the smoothed prolongators
P0,P1 is maintained, i.e. D0P0 = P1D̂0. In the following theorem we generalize this result to
arbitrary k.

Theorem 2. Given discrete k-form prolongation operators Pk satisfying (16i),(16ii), and
(16iii), let Pk : Ω̂k

d → Ωk
d denote the smoothed discrete k-form prolongation operators with the

following properties

Pk = SkPk (20i)

S0 = (I − S0DT
0 M1D0) (20ii)

Sk = (I − SkDT
k Mk+1Dk − Dk−1Sk−1DT

k−1Mk) for k > 0 (20iii)

where Sk defines the type of prolongation smoother. Then, diagram (8) holds. That is,

DkPk = Pk+1D̂k (21)

Proof. First, if
DkSk = Sk+1Dk (22)

then

Pk+1D̂k = Sk+1Pk+1D̂k

= Sk+1Pk+1(PT
k+1Pk+1)−1PT

k+1DkPk

= Sk+1DkPk

= DkSkPk

= DkPk

Therefore, it suffices to show that (22) holds for all k. For k = 0 we have

S1D0 = (I − S1DT
1 M2D1 − D0S0DT

0 M1)D0

= (D0 − S1DT
1 M2D1D0 − D0S0DT

0 M1D0)
= (D0 − D0S0DT

0 M1D0)
= D0(I − S0DT

0 M1D0)
= D0S0

and for all k > 1 we have

Sk+1Dk = (I − Sk+1DT
k+1Mk+2Dk+1 − DkSkDT

k Mk+1)Dk

= (Dk − Sk+1DT
k+1Mk+2Dk+1Dk − DkSkDT

k Mk+1Dk)

= (Dk − DkSkDT
k Mk+1Dk)

= (Dk − DkSkDT
k Mk+1Dk − DkDk−1Sk−1DT

k−1Mk)

= Dk(I − SkDT
k Mk+1Dk − Dk−1Sk−1DT

k−1Mk)
= DkSk

which completes the proof of (21).

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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On subsequent levels, the coarse innerproducts M̂k = PT
k MkPk and derivatives D̂k replace

Mk and Dk in the definition of Sk. As shown below, the Galerkin product Âk = PT
k AkPk can

also be written in terms of the coarse operators.

Âk = PT
k AkPk

= PT
k DT

k Mk+1DkPk

= D̂T
kPT

k+1Mk+1Pk+1D̂k

= D̂T
k M̂k+1D̂k

2.8. Extensions and Applications

Note that condition (9) permits some freedom in our choice of aggregates. For instance, in
restricting ourselves to contiguous aggregates we have slightly enriched the range of Pk+1

beyond what is necessary. Provided that Pk+1 already satisfies (9), additional coarse basis
functions, can be introduced to better approximate low-energy modes. As in Smoothed
Aggregation, these additional columns of Pk+1 can be chosen to exactly interpolate given
near-nullspace vectors [21].

So far we have only discussed coarsening the cochain complex (8). It is worth noting that
coarsen complex works equally well on the chain complex formed by the mesh boundary
operators ∂k = DT

k−1,

0 �
DT
−1 Ω0

d
� DT

0 . . . �
DT

N−2 ΩN−1
d

�
DT

N−1 ΩN
d
�DT

N 0, (23)

by simply reversing the order of the complex, i.e. (D−1,D,0 , . . . ,DN )⇒ (DT
N ,DT

N−1, . . . ,D−1).
In this case aggregate nodes will aggregate the top-level elements, for instance the triangles in
Figure 1. Intuitively, ∂k acts like a derivative operator that maps k-cochains to (k+1)-cochains,
however one typically refers to these as k-chains rather than cochains [14]. In Section 3 we
coarsen both complexes when computing Hodge decompositions.

3. HODGE DECOMPOSITION

The Hodge Decomposition [11] states that the space of k-forms on a closed manifold can be
decomposed into three orthogonal subspaces,

Ωk = dk−1Ωk−1 ⊕ δk+1Ωk+1 ⊕Hk, (24)

where Hk is the space of harmonic k-forms, Hk = {h ∈ Ωk|∆kh = 0}. The analogous result
holds for the space of discrete k-forms Ωk

d, where the derived codifferential [4]

δk = M−1
k−1DT

k−1Mk, (25)

is defined to be the adjoint of Dk−1 in the discrete innerproduct Mk. Convergence of the
discrete approximations to the Hodge decomposition is examined in [9].

In practice, for a discrete k-form ωk we seek a decomposition

ωk = Dk−1α
k−1 + M−1

k DT
k Mk+1β

k+1 + hk, (26)
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for some αk−1 ∈ Ωk−1
d , βk+1 ∈ Ωk+1

d , and hk ∈ Ωk
d where ∆khk = 0. Note that αk−1 and

βk+1 are generally not unique, since the kernels of Dk−1 and M−1
k DT

k Mk+1 are non-empty.
However, the discrete k-forms (Dk−1α

k−1) and (M−1
k DT

k Mk+1β
k+1) are uniquely determined.

We decompose ωk into (26) by solving(
DT

k−1MkDk−1

)
αk−1 = DT

k−1Mkω
k, (27)(

DkM−1
k DT

k

)
Mk+1β

k+1 = Dkω
k, (28)

hk = ωk − Dk−1α
k−1 −M−1

k DT
k Mk+1β

k+1. (29)

Note that (28) involves the explicit inverse M−1
k which is typically dense†. In the following

sections, we first consider the special case Mk = I and then show how (28) can be circumvented
in the general case. Equation (27) is obtained by left multiplying Mk−1DT

k−1Mk on both sides
of (26). Likewise, applying Dk to both sides of (26) yields (28). Equivalently, one may seek
minima of the following functionals.∣∣∣∣∣∣∣∣Dk−1α

k−1 − ωk

∣∣∣∣∣∣∣∣
Mk

∣∣∣∣∣∣∣∣M−1
k DT

k Mk+1β
k+1 − ωk

∣∣∣∣∣∣∣∣
Mk

(30)

3.1. Special Case

Taking the appropriate identity matrix for all discrete innerproducts Mk in (27) - (29) yields

DT
k−1Dk−1α

k−1 = DT
k−1ω

k, (31)

DkDT
k β

k+1 = Dkω
k, (32)

hk = ωk − Dk−1α
k−1 − DT

k β
k+1. (33)

Although (31) - (33) are devoid of metric information, some fundamental topological properties
of the mesh are retained. For instance, the number of harmonic k-forms, which together form a
cohomology basis, is independent of the choice of innerproduct‡. In applications where metric
information is either irrelevant or simply unavailable[8] these “nonphysical” equations are
sufficient.

Algorithm 4: construct solver(k,Mk,D−1,D0, . . . ,DN )

1 A0 ⇐ DT
k−1MkDk−1

2 D0
−1, . . . ,D0

N ⇐ D−1, . . . ,DN

3 for l = 0 to NUM LEVELS − 1
4 P l

0, . . . , P
l
N ,D

l+1
−1 , . . . ,D

l+1
N ⇐ coarsen complex (Dl

−1, . . . ,Dl
N )

5 end
6 for l = 0 to NUM LEVELS − 1
7 Pl ⇐ smooth pro longator (Al, P

l
k−1 )

8 Al+1 ⇐ PT
l AlPl

9 end
10 return MG solver (A0, A1, . . . , ANUM LEVELS,P0,P1, . . . ,PNUM LEVELS−1)

†The covolume Hodge star is a notable exception.
‡In the case M = I, the cohomology basis is actually a homology basis also.
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Algorithm 5: decompose special(ωk,D−1,D0, . . . ,DN )

1 s o l v e r 1 ⇐ c o n s t r u c t s o l v e r (k, I,D−1,D,0 , . . . ,DN )
2 s o l v e r 2 ⇐ c o n s t r u c t s o l v e r (N − k − 1, I,DT

N ,DT
N−1, . . . ,DT

−1 )
3

4 αk−1 ⇐ s o l v e r 1 (DT
k−1ω

k )
5 βk+1 ⇐ s o l v e r 2 (Dkω

k )
6 h⇐ ωk − Dk−1α

k−1 − DT
k β

k+1

7

8 return αk−1, βk+1, hk

Algorithm 5 demonstrates how the proposed method is used to compute Hodge
decompositions in the special case. Multigrid solvers solver1 and solver2 are constructed
for the solution of linear systems (31) and (32) respectively. In the latter case, the direction
of the chain complex is reversed when being passed as an argument to construct solver. As
mentioned in Section 2.8, coarsen complex coarsens the reversed complex with this simple
change of arguments.

Using the identity innerproduct, construct solver applies the proposed method recursively
to produce a progressively-coarser hierarchy of tentative prolongators P l

k and discrete
derivatives Dl

k. The tentative prolongators are then smoothed by a user-defined function
smoothprolongator to produce the final prolongators Pl and Galerkin products Al+1 ⇐
PT

l AlPl. Finally, the matrices A0, . . . , ANUM LEVELS and P0, . . . ,PNUM LEVELS−1 determine the
multigrid cycle in a user-defined class MGsolver. Choices for smoothprolongator and
MGsolver are discussed in Section 4.

3.2. General Case

The multilevel solver outlined in Section 3.1 can be directly applied to linear system (27) by
passing the innerproduct Mk, instead of the identity, in the arguments to construct solver.
However, a different strategy is needed to solve (28) since M−1

k is generally dense and cannot be
formed explicitly. In the following we outline a method for computing Hodge Decompositions
in the general case.

We first remark that if a basis for the space of Harmonic k-forms, Hk = span{hk
0 , h

k
1 , . . . h

k
H},

is known, then the harmonic component of the Hodge Decomposition is easily computed by
projecting ωk onto the basis elements. Furthermore, since αk−1 in (27) can also be obtained,
we can compute the value of the remaining component (ωk − Dk−1α

k−1 − hk) which must lie
in the range of M−1

k DT
k Mk+1 due to orthogonality of the three spaces.

Therefore, the task of computing general Hodge Decompositions can be reduced to
computing a basis for Hk. Sometimes a basis is known a priori. For instance, H0 which
corresponds to the nullspace of the pure-Neumann problem, is spanned by constant vectors
on each connected component of the domain. Furthermore, if the domain is contractible then
Hk = {} for k > 0. However, in many cases of interest we cannot assume that a basis for Hk

is known, and therefore it must be computed.
Note that decompose special can be used to determine a Harmonic k-form basis for

the identity innerproduct by decomposing randomly generated k-forms until their respective
harmonic components become linearly dependent. We denote this basis {hk

0 , h
k
1 , . . . h

k
m} and

their span Hk. Using these k-forms, a basis for the harmonic k-forms with innerproduct Mk
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can be produced by solving

DT
k−1MkDk−1α

k−1
i = DT

k−1Mkhk
i , (34)

hk
i = hk

i − Dk−1α
k−1
i . (35)

It is readily verified that hk
0 , . . . , h

k
m are harmonic,

Dkh
k
i = Dkhk

i − DkDk−1α
k−1
i = 0, (36)

M−1
k−1DT

k−1Mkh
k
i = M−1

k−1(DT
k−1Mkhk

i − DT
k−1Mkh

k
i Dk−1α

k−1
i ) = 0, (37)

since DkDk−1 = 0 and Dkhk
i = 0 by assumption. It remains to be shown that hk

0 , . . . , h
k
m

are linearly independent. Supposing hk
0 , . . . , h

k
m to be linearly dependent, there exist scalars

c0, . . . , cH not all zero such that

0 =
m∑

i=0

cih
k
i ,

=
m∑

i=0

ci(hk
i − Dk−1α

k−1
i ),

=
m∑

i=0

cihk
i −

m∑
i=0

ciDk−1α
k−1
i ,

which is a contradiction, since
(∑N−1

i=0 cihk
i

)
∈ Hk is nonzero and Hk ⊥ R(Dk−1). Note that

the harmonic forms hk
0 , . . . , h

k
m are not generally the same as the harmonic components of the

random k-forms used to produce hk
0 , . . . h

k
m.

4. NUMERICAL RESULTS

We have applied the proposed method to a number of structured and unstructured problems.
In all cases, a multigrid V(1,1)-cycle is used as a preconditioner to conjugate gradient iteration.
Unless stated otherwise, a symmetric Gauss-Seidel sweep is used during pre- and post-
smoothing stages. Iteration on the positive-semidefinite systems,

DT
k Dk, DkDT

k , DT
k Mk+1Dk, (38)

proceeds until the relative residual is reduced by 10−10. The matrix DT
0 M1D0 corresponds to

a Poisson problem with pure-Neumann boundary conditions. Similarly, DT
1 M2D1 is an eddy-

current problem (6) with σ = 0. As explained in Section 3, matrices (38) arise in discrete
Hodge decompositions.

The multigrid hierarchy extends until the number of unknowns falls below 500, at which
point a pseudoinverse is used to perform the coarse level solve. The tentative prolongators are
smoothed twice with a Jacobi smoother

S = I − 4
3λmax

diag(A)−1A (39)

P = SSP (40)
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System Grid Unknowns Convergence Work/Digit Complexity Levels

DT
0 D0

2502 63,001 0.075 8.172 1.636 4
5002 251,001 0.100 9.321 1.661 4

10002 1002,001 0.063 7.866 1.686 5

DT
1 D1

2502 125,500 0.096 8.370 1.506 4
5002 501,000 0.103 8.741 1.527 5

10002 2,002,000 0.085 8.142 1.545 5

D0DT
0

2502 125,500 0.124 9.529 1.530 4
5002 501,000 0.133 9.932 1.542 5

10002 2,002,000 0.094 8.550 1.553 5

D1DT
1

2502 62,500 0.063 7.664 1.641 4
5002 250,000 0.063 7.758 1.664 4

10002 1,000,000 0.063 7.868 1.687 5

DT
0 M1D0

2502 63,001 0.043 5.894 1.415 4
5002 251,001 0.055 6.480 1.432 4

10002 1,002,001 0.041 5.963 1.448 5

DT
1 M2D1

2502 125,500 0.095 8.362 1.506 4
5002 501,000 0.103 8.738 1.527 5

10002 2,002,000 0.085 8.140 1.545 5

Table I: Two-dimensional scaling results.

where λmax is an upper bound on the spectral radius of diag(A)−1A. When zero or near
zero values appear on the diagonal of the Galerkin product PTAP, the corresponding rows
and columns are zeroed and ignored during smoothing. We discuss this choice of prolongation
smoother in Section 4.1.

Tables I and II show the result of applying the proposed method to regular quadrilateral
and hexahedral meshes of increasing size. In both cases, the finite element spaces described in
[5] are used to produce the innerproducts Mk. The systems are solved with a random initial
value for x. Since the matrices are singular, the solution x is an arbitrary null vector. Column
labels are explained as follows:

• ‘Grid’ - dimensions of the quadrilateral/hexahedral grid
• ‘Convergence’- geometric mean of residual convergence factors N

√
||rN ||/||r0||

• ‘Work/Digit’ - averaged operation cost of 1/10 residual reduction in units of nnz(A) §

• ‘Complexity’ - total memory cost of multigrid hierarchy relative to ‘System’
• ‘Levels’ - number of levels in the multigrid hierarchy

For each k, the algorithm exhibits competitive convergence factors while maintaining low
operator complexity. Together, the work per digit-of-accuracy remains bounded as the problem
size increases.

In Table III, numerical results are presented for the unstructured tetrahedral mesh depicted

§including the cost of conjugate gradient iteration
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System Grid Unknowns Convergence Work/Digit Complexity Levels

DT
0 D0

253 17,576 0.120 7.976 1.268 3
503 132,651 0.151 9.118 1.300 3

1003 1,030,301 0.105 7.960 1.358 4

DT
1 D1

253 50,700 0.192 10.432 1.296 3
503 390,150 0.216 11.587 1.342 4

1003 3,060,300 0.208 11.849 1.415 4

DT
2 D2

253 48,750 0.188 9.342 1.156 3
503 382,500 0.218 10.447 1.180 3

1003 3,030,000 0.267 12.350 1.217 4

D0DT
0

253 50,700 0.287 13.323 1.246 3
503 390,150 0.391 17.594 1.235 4

1003 3,060,300 0.323 14.811 1.252 4

D1DT
1

253 48,750 0.187 10.928 1.389 3
503 382,500 0.264 13.855 1.403 4

1003 3,030,000 0.194 11.630 1.455 4

D2DT
2

253 15,625 0.089 7.152 1.302 3
503 125,000 0.102 7.649 1.318 3

1003 1,000,000 0.103 7.949 1.368 4

DT
0 M1D0

253 17,576 0.037 4.804 1.178 3
503 132,651 0.053 5.495 1.200 3

1003 1,030,301 0.038 5.054 1.241 4

DT
1 M2D1

253 50,700 0.097 6.838 1.184 3
503 390,150 0.113 7.461 1.214 4

1003 3,060,300 0.088 6.932 1.264 4

DT
2 M3D2

253 48,750 0.188 9.334 1.156 3
503 382,500 0.223 10.585 1.180 3

1003 3,030,000 0.265 12.294 1.217 4

Table II: Three-dimensional scaling results.

in Figure 7. As with classical algebraic multigrid methods, performance degrades in moving
from a structured to an unstructured tessellation. However the decrease in performance for
the scalar problems DT

0 D0 and DT
0 M1D0 is less significant than that of the other problems.

4.1. Prolongation Smoother

On the nonscalar problems considered, we found second degree prolongation smoothers (39)
noticeably more efficient than first degree prolongation smoothers. While additional smoothing
operations generally improve the convergence rate of Smoothed Aggregation methods, this
improvement is typically offset by an increase in operator complexity and therefore the
resultant work per digit of accuracy is not improved. However, there is an important difference
between the tentative prolongators in the scalar and nonscalar problems. In the scalar case,
all degrees of freedom are associated with a coarse aggregate and therefore the tentative
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Figure 7: Titan IV rocket mesh.

System Unknowns Convergence Work/Digit Complexity Levels
DT

0 D0 84,280 0.073 6.601 1.304 3
DT

1 D1 554,213 0.378 18.816 1.391 4
DT

2 D2 920,168 0.366 15.856 1.186 4
D0DT

0 554,213 0.236 19.848 2.289 4
D1DT

1 920,168 0.390 17.068 1.197 4
D2DT

2 450,235 0.370 14.400 1.043 3
DT

0 M1D0 84,280 0.144 8.949 1.304 3
DT

1 M2D1 554,213 0.518 29.428 1.483 4
DT

2 M3D2 920,168 0.348 15.111 1.187 4

Table III: Solver performance on the unstructured tetrahedral mesh in Figure 7.

prolongator has no zero rows. As described in Section 2.4, the tentative prolongator for
nonscalar problems has zero rows for elements contained in the interior of a nodal aggregate.
In the nonscalar case, additional smoothing operations incorporate a greater proportion of
these degrees of freedom into the range of the final prolongator.

The influence of higher degree prolongation smoothers on solver performance is reported
in Table IV. Column ‘Degree’ records the degree d of the prolongation smoother P = SdP
while ‘Percent Zero’ reflects the percentage of zero rows in the first level prolongator. As
expected the operator complexity increases with smoother degree. However, up to a point,
this increase is less significant than the corresponding reduction in solver convergence. Second
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System Grid Degree Percent Zero Convergence Work/Digit Complexity

DT
1 M2D1 2502

0 66.8 0.697 42.255 1.123
1 66.8 0.357 14.774 1.123
2 22.9 0.096 8.379 1.506
3 0.4 0.063 9.515 2.084
4 0.0 0.063 10.188 2.250

DT
1 M2D1 503

0 67.6 0.567 25.043 1.034
1 66.5 0.290 11.497 1.035
2 8.8 0.096 7.460 1.214
3 0.3 0.063 9.011 1.577
4 0.0 0.063 9.074 1.632

DT
2 M3D2 503

0 89.63 0.549 23.670 1.034
1 89.63 0.382 14.753 1.034
2 63.93 0.214 10.304 1.180
3 23.77 0.122 9.203 1.481
4 6.48 0.098 8.348 1.487
5 2.07 0.089 10.267 1.953

Table IV: Comparison of prolongation smoothers.

degree smoothers exhibit the best efficiency in both instances of the problem DT
1 M2D1 and

remain competitive with higher degree smoothers in the last test. Since work per digit figures
exclude the cost of constructing multigrid transfer operators, these higher degree smoothers
may be less efficient in practice.

5. CONCLUSION

We have described an extension of Reitzinger and Schöberl’s methodology [19] to higher
dimensional k-forms with the addition of smoothed prolongation operators. Furthermore, we
have detailed properties of the prolongation operator that arise from this generalized setting.
Specifically we have identified necessary and sufficient conditions under which commutativity
is maintained. The prolongation operators give rise to a hierarchy of exact finite element
sequences. The generality of the method is appealing since the components are constructed
independently of a particular mimetic discretization. Lastly, we have initiated a study of
algebraic multigrid for the Hodge decomposition of general k-forms.
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